The Gulf of Suez-northern Red Sea neogene rift: a quantitive basin analysis

Mark Richardson, Michael A. Arthur

Research output: Contribution to journalArticlepeer-review

128 Scopus citations


Subsidence analysis (backstripping) was carried out on a series of wells from the Gulf of Suez and northern Red Sea region of Egypt in order to examine the interplay between tectonic events, basin subsidence, sedimentation and sea level changes in a young, developing ocean basin and continental margin. Using constraints on chronostratigraphy and paleodepth from various sources combined with stratigraphic and structural information from industry wells and other geophysical sources it has been possible to compile the data necessary to perform geohistory analyses throughout the region. Major subsidence due to crustal thinning began ∼25 Ma with sedimentation initially occurring in isolated sub-basins. These earliest sediments record the transition from continental to marine depositional environments. Subsequently during early and middle Miocene times subsidence was rapid and uniform along and across the entire rift basin. Open marine sedimentation occurred across all structural regimes. The mid-Clysmic tectonic event (16.5 Ma) resulted in structural rearrangement of the rift basin and uplift of the rift shoulders. Rapid subsidence continued as global sea level fell, producing a series of prograding, siliciclastic fan-deltas at the rift margins. At ∼15.5 Ma, opening of the Suez rift was terminated, tectonic subsidence decreased dramatically in the southern rift and ceased entirely in the northern rift. Tensional plate motion probably was transferred from the Gulf of Suez to sinistral strike-slip movement on the Dead Sea transform at this time. The quiescence in subsidence combined with a lowered global sea level resulted in the deposition of a thick (up to 4 km) series of evaporites within the central trough of the rift from the middle to latest Miocene. The accumulation of such a thick sequence of sediments during a phase of decreased tectonic subsidence is interpreted as a 'filling-in' of the rift topography which developed during the earlier period of rapid subsidence and rift-shoulder uplift and continued compaction. A rapid global sea level rise concomitant with a subsequent pulse of increased tectonic activity in the latest Miocene-earliest Pliocene returned the rift to dominantly marine conditions.

Original languageEnglish (US)
Pages (from-to)247-270
Number of pages24
JournalMarine and Petroleum Geology
Issue number3
StatePublished - Aug 1988

All Science Journal Classification (ASJC) codes

  • Oceanography
  • Geophysics
  • Geology
  • Economic Geology
  • Stratigraphy


Dive into the research topics of 'The Gulf of Suez-northern Red Sea neogene rift: a quantitive basin analysis'. Together they form a unique fingerprint.

Cite this