Abstract
The impact of the fraction of germanium on the carrier performance of two-dimensional strained silicon, which embraces both the non-degenerate and degenerate regimes, is developed. In this model, the Fermi integral of order zero is employed. The impact of the fraction of germanium on the relaxed Si 1-xGex substrate (x), carrier concentration and temperature is reported. It is revealed that the effect of x on the hole concentration is dominant for a normalized Fermi energy of more than three, or in other words the non-degenerate regime. On the contrary, the x gradient has less influence in the degenerate regime. Furthermore, by increasing x there is an increase in the intrinsic velocity, particularly with high carrier concentration and temperature.
Original language | English (US) |
---|---|
Article number | 062001 |
Journal | Journal of Semiconductors |
Volume | 34 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2013 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Electrical and Electronic Engineering
- Materials Chemistry