TY - JOUR
T1 - The impact of paleogeography, pCO2, poleward ocean heat transport and sea level change on global cooling during the Late Ordovician
AU - Herrmann, Achim D.
AU - Patzkowsky, Mark E.
AU - Pollard, David
N1 - Funding Information:
We thank the Penn State Earth and Mineral Science Environment Institute, NASA Astrobiology Institute (NCC2-1057), and NSF (EAR 00-01918 and EAR 01-06737) for supporting this research. We also thank Lee Kump (Penn State) for the comments on the manuscript. We thank P.J. Brenchley, Jozef Syktus, and Finn Surlyk for their helpful reviews.
PY - 2004/4/13
Y1 - 2004/4/13
N2 - We performed sensitivity experiments with the global climate model GENESIS on two stages of the Upper Ordovician (Caradocian, ∼454 Ma; Ashgillian, ∼446 Ma) under a range of atmospheric pCO2 values (8-18× PAL; Pre-industrial Atmospheric Level), high and low sea level, and two values of poleward ocean heat transport in order to determine the importance of these variables on global cooling. We then coupled a three-dimensional ice sheet model to the global climate model in order to investigate the necessary boundary conditions for ice sheet formation. All simulations with a high sea level and normal heat transport remain free of ice sheets, even with pCO 2 levels as low as 8× PAL. In the Caradocian simulations, ice sheets form in three scenarios: (1) with pCO2 of 8× PAL and a low sea level and normal poleward ocean heat transport, (2) with pCO 2 of 8× PAL and a high sea level and reduced (50% of normal) poleward ocean heat transport, and (3) with pCO2 of 15× PAL and a low sea level and reduced poleward ocean heat transport. In the Ashgillian simulations, ice sheets form in only two scenarios: (1) with pCO 2 of 8× PAL and a low sea level and normal poleward ocean heat transport, or (2) with pCO2 of 8× PAL and a high sea level and reduced poleward ocean heat transport. The ice sheets in the Ashgillian experiments are larger and thicker than the ice sheets in the Caradocian simulations because the southward movement of Gondwana increased land area in the higher southern latitudes where ice sheets could grow. The threshold for glaciation under Ashgillian paleogeography is 8× PAL and either a low sea level (exposed shelves) or a reduced poleward ocean heat transport. While the paleogeographic evolution and a drop in pCO2 during the Late Ordovician cooled the global climate, changes in additional factors were required to initiate ice sheet formation, such as a drop in sea level, a reduction in poleward ocean heat transport, or a combination of both.
AB - We performed sensitivity experiments with the global climate model GENESIS on two stages of the Upper Ordovician (Caradocian, ∼454 Ma; Ashgillian, ∼446 Ma) under a range of atmospheric pCO2 values (8-18× PAL; Pre-industrial Atmospheric Level), high and low sea level, and two values of poleward ocean heat transport in order to determine the importance of these variables on global cooling. We then coupled a three-dimensional ice sheet model to the global climate model in order to investigate the necessary boundary conditions for ice sheet formation. All simulations with a high sea level and normal heat transport remain free of ice sheets, even with pCO 2 levels as low as 8× PAL. In the Caradocian simulations, ice sheets form in three scenarios: (1) with pCO2 of 8× PAL and a low sea level and normal poleward ocean heat transport, (2) with pCO 2 of 8× PAL and a high sea level and reduced (50% of normal) poleward ocean heat transport, and (3) with pCO2 of 15× PAL and a low sea level and reduced poleward ocean heat transport. In the Ashgillian simulations, ice sheets form in only two scenarios: (1) with pCO 2 of 8× PAL and a low sea level and normal poleward ocean heat transport, or (2) with pCO2 of 8× PAL and a high sea level and reduced poleward ocean heat transport. The ice sheets in the Ashgillian experiments are larger and thicker than the ice sheets in the Caradocian simulations because the southward movement of Gondwana increased land area in the higher southern latitudes where ice sheets could grow. The threshold for glaciation under Ashgillian paleogeography is 8× PAL and either a low sea level (exposed shelves) or a reduced poleward ocean heat transport. While the paleogeographic evolution and a drop in pCO2 during the Late Ordovician cooled the global climate, changes in additional factors were required to initiate ice sheet formation, such as a drop in sea level, a reduction in poleward ocean heat transport, or a combination of both.
UR - http://www.scopus.com/inward/record.url?scp=3342916959&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=3342916959&partnerID=8YFLogxK
U2 - 10.1016/j.palaeo.2003.12.019
DO - 10.1016/j.palaeo.2003.12.019
M3 - Article
AN - SCOPUS:3342916959
SN - 0031-0182
VL - 206
SP - 59
EP - 74
JO - Palaeogeography, Palaeoclimatology, Palaeoecology
JF - Palaeogeography, Palaeoclimatology, Palaeoecology
IS - 1-2
ER -