The Impact of Simulator Size on Forces Generated in the Performance of a Defined Intracorporeal Suturing Task: A Pilot Study

Aodhnait S. Fahy, Luai Jamal, Bojan Gavrilovic, Brian Carillo, Justin T. Gerstle, Ahmed Nasr, Georges Azzie

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Background: In pediatric minimal access surgery, the operative domain may vary from that of an adult to that of a neonate. This study aimed to quantify the impact of decreased operative domain on forces generated in the performance of a defined intracorporeal suturing task. Methods: One hundred five participants performed a defined intracorporeal suturing task in small and large simulators. Time to task completion and force analysis parameters (FAPs = total, maximum, and mean forces in X, Y, and Z axes) were measured. Expertise level was assigned based on the number of laparoscopic cases. Outcomes were analyzed using paired sample t-Tests, P value of <.05. Results: Time to task completion varied significantly for experts between adult and pediatric simulators but not for intermediates or novices. Total, maximum, and mean forces in the X ("side to side") axis were significantly greater in the larger laparoscopic simulator for all levels of expertise. In the Y axis ("in and out" movement) and Z axis ("up and down" movement), total and mean forces were higher in the adult simulator regardless of the level of expertise. Differences in maximum force between the adult and pediatric simulators in the Z axis ("up and down" movement) varied significantly for novices and intermediates but not for experts. Conclusion: Forces were greater, particularly in the side-To-side plane, in the larger simulator for participants of all levels in the performance of this defined intracorporeal suturing task. Further analysis will determine the reasons for and implications of the increased force parameters in the simulator of larger domain.

Original languageEnglish (US)
Pages (from-to)1520-1524
Number of pages5
JournalJournal of Laparoendoscopic and Advanced Surgical Techniques
Volume28
Issue number12
DOIs
StatePublished - Dec 2018

All Science Journal Classification (ASJC) codes

  • Surgery

Fingerprint

Dive into the research topics of 'The Impact of Simulator Size on Forces Generated in the Performance of a Defined Intracorporeal Suturing Task: A Pilot Study'. Together they form a unique fingerprint.

Cite this