The influence of soft tissue movement on ground reaction forces, joint torques and joint reaction forces in drop landings

Matthew T.G. Pain, John H. Challis

Research output: Contribution to journalArticlepeer-review

93 Scopus citations

Abstract

The aim of this study was to determine the effects that soft tissue motion has on ground reaction forces, joint torques and joint reaction forces in drop landings. To this end a four body-segment wobbling mass model was developed to reproduce the vertical ground reaction force curve for the first 100 ms of landing. Particular attention was paid to the passive impact phase, while selecting most model parameters a priori, thus permitting examination of the rigid body assumption on system kinetics. A two-dimensional wobbling mass model was developed in DADS (version 9.00, CADSI) to simulate landing from a drop of 43 cm. Subject-specific inertia parameters were calculated for both the rigid links and the wobbling masses. The magnitude and frequency response of the soft tissue of the subject to impulsive loading was measured and used as a criterion for assessing the wobbling mass motion. The model successfully reproduced the vertical ground reaction force for the first 100 ms of the landing with a peak vertical ground reaction force error of 1.2% and root mean square errors of 5% for the first 15 ms and 12% for the first 40 ms. The resultant joint forces and torques were lower for the wobbling mass model compared with a rigid body model, up to nearly 50% lower, indicating the important contribution of the wobbling masses on reducing system loading.

Original languageEnglish (US)
Pages (from-to)119-124
Number of pages6
JournalJournal of Biomechanics
Volume39
Issue number1
DOIs
StatePublished - 2006

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Orthopedics and Sports Medicine
  • Biomedical Engineering
  • Rehabilitation

Fingerprint

Dive into the research topics of 'The influence of soft tissue movement on ground reaction forces, joint torques and joint reaction forces in drop landings'. Together they form a unique fingerprint.

Cite this