Abstract

Background: Abdominal pain is a frequent and persistent problem in the most common gastrointestinal disorders, including irritable bowel syndrome and inflammatory bowel disease. Pain adversely impacts quality of life, incurs significant healthcare expenditures, and remains a challenging issue to manage with few safe therapeutic options currently available. It is imperative that new methods are developed for identifying and treating this symptom. A variety of peripherally active neuroendocrine signaling elements have the capability to influence gastrointestinal pain perception. A large and growing body of evidence suggests that voltage-gated sodium channels (VGSCs) play a critical role in the development and modulation of nociceptive signaling associated with the gut. Several VGSC isoforms demonstrate significant promise as potential targets for improved diagnosis and treatment of gut-based disorders associated with hyper- and hyposensitivity to abdominal pain. Purpose: In this article, we critically review key investigations that have evaluated the potential role that VGSCs play in visceral nociception and discuss recent advances related to this topic. Specifically, we discuss the following: (a) what is known about the structure and basic function of VGSCs, (b) the role that each VGSC plays in gut nociception, particularly as it relates to human physiology, and (c) potential diagnostic and therapeutic uses of VGSCs to manage disorders associated with chronic abdominal pain.

Original languageEnglish (US)
Article numbere13460
JournalNeurogastroenterology and Motility
Volume31
Issue number2
DOIs
StatePublished - Feb 2019

All Science Journal Classification (ASJC) codes

  • Physiology
  • Endocrine and Autonomic Systems
  • Gastroenterology

Fingerprint

Dive into the research topics of 'The influence of voltage-gated sodium channels on human gastrointestinal nociception'. Together they form a unique fingerprint.

Cite this