The intensity and connectivity of spontaneous brain activity in a language network relate to aging and language

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Neuroimaging studies often either look at functional activation in response to an explicit task, or functional connectivity (i.e., interregional correlations) during resting-state. Few studies have looked at the intensity of brain activity or its relationship with age, behavior, and language. The current study investigated both intensity (i.e., the Amplitude of Low-Frequency Fluctuations, ALFF) and the functional connectivity of spontaneous brain activity during rest and their relationship with age and language. A life-span sample of individuals (N = 152) completed a battery of neuropsychological tests to assess basic cognitive functions and resting-state functional MRI data to assess spontaneous brain activity. Focusing on an extend language network, the mean ALFF and total degree were calculated for this network. We found that increased age was associated with more intense activity (i.e., higher ALFF) but lower within-network connectivity. Additionally, these increases in activity within the language network during resting-state were related to worse language ability, particularly in younger adults, supporting a dedifferentiation account of cognition. Our results support the utility of using resting-state data as an indicator of cognition and support the role of ALFF as a potential biomarker in characterizing the relationships between resting-state brain activity, age, and cognition.

Original languageEnglish (US)
Article number107784
JournalNeuropsychologia
Volume154
DOIs
StatePublished - Apr 16 2021

All Science Journal Classification (ASJC) codes

  • Experimental and Cognitive Psychology
  • Cognitive Neuroscience
  • Behavioral Neuroscience

Fingerprint

Dive into the research topics of 'The intensity and connectivity of spontaneous brain activity in a language network relate to aging and language'. Together they form a unique fingerprint.

Cite this