The interaction between vapor-deposited Al atoms and methylester-terminated self-assembled monolayers studied by time-of-flight secondary ion mass spectrometry, X-ray photoelectron spectroscopy and infrared reflectance spectroscopy

G. L. Fisher, A. Hooper, R. L. Opila, D. R. Jung, D. L. Allara, N. Winograd

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

The deposition of 2 Å of Al metal onto a monolayer of methylester-terminated alkanethiolate (HS(CH2)15CO2CH3) self-assembled on polycrystalline Au(111) was studied using time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS) and infrared reflectance spectroscopy (IRS). The deposited Al was found to be highly reactive with the oxygen atoms in the self-assembled monolayer terminal functional group. No reactivity between Al and the methylene backbone of the monolayer was observed, nor was any Al observed at the monolayer/Au interface. However, the deposition of Al does induce some chain disordering.

Original languageEnglish (US)
Pages (from-to)139-148
Number of pages10
JournalJournal of Electron Spectroscopy and Related Phenomena
Volume98-99
DOIs
StatePublished - Jan 1999

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Radiation
  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics
  • Spectroscopy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'The interaction between vapor-deposited Al atoms and methylester-terminated self-assembled monolayers studied by time-of-flight secondary ion mass spectrometry, X-ray photoelectron spectroscopy and infrared reflectance spectroscopy'. Together they form a unique fingerprint.

Cite this