Abstract
MCAK belongs to the Kin I subfamily of kinesin-related proteins, a unique group of motor proteins that are not motile but instead destabilize microtubules. We show that MCAK is an ATPase that catalytically depolymerizes microtubules by accelerating, 100-fold, the rate of dissociation of tubulin from microtubule ends. MCAK has one high-affinity binding site per protofilament end, which, when occupied, has both the depolymerase and ATPase activities. MCAK targets protofilament ends very rapidly (on-rate 54 μM-1·s-1), perhaps by diffusion along the microtubule lattice, and, once there, removes ∼20 tubulin dimers at a rate of 1 s-1. We propose that up to 14 MCAK dimers assemble at the end of a microtubule to form an ATP-hydrolyzing complex that processively depolymerizes the microtubule.
Original language | English (US) |
---|---|
Pages (from-to) | 445-457 |
Number of pages | 13 |
Journal | Molecular cell |
Volume | 11 |
Issue number | 2 |
DOIs | |
State | Published - Feb 1 2003 |
All Science Journal Classification (ASJC) codes
- Molecular Biology
- Cell Biology