TY - JOUR
T1 - The largest subunit of DNA polymerase delta is required for normal formation of meiotic type I Crossovers 1[OPEN]
AU - Wang, Cong
AU - Huang, Jiyue
AU - Zhang, Jun
AU - Wang, Hongkuan
AU - Han, Yapeng
AU - Copenhaver, Gregory P.
AU - Ma, Hong
AU - Wang, Yingxiang
N1 - Publisher Copyright:
© 2019 American Society of Plant Biologists.
PY - 2019/2
Y1 - 2019/2
N2 - Meiotic recombination contributes to the maintenance of the association between homologous chromosomes (homologs) and ensures the accurate segregation of homologs during anaphase I, thus facilitating the redistribution of alleles among progeny. Meiotic recombination is initiated by the programmed formation of DNA double strand breaks, the repair of which requires DNA synthesis, but the role of DNA synthesis proteins during meiosis is largely unknown. Here, we hypothesized that the lagging strand-specific DNA Polymerase d (POL d) might be required for meiotic recombination, based on a previous analysis of DNA Replication Factor1 that suggested a role for lagging strand synthesis in meiotic recombination. In Arabidopsis (Arabidopsis thaliana), complete mutation of the catalytic subunit of POL d, encoded by AtPOLD1, leads to embryo lethality. Therefore, we used a meiocyte-specific knockdown strategy to test this hypothesis. Reduced expression of AtPOLD1 in meiocytes caused decreased fertility and meiotic defects, including incomplete synapsis, the formation of multivalents, chromosome fragmentation, and improper segregation. Analysis of meiotic crossover (CO) frequencies showed that AtPOLD1 RNAi plants had significantly fewer interference-sensitive COs than the wild type, indicating that AtPOL σ participates in type I CO formation. AtPOLD1RNAi atpol2a double mutant meiocytes displayed more severe meiotic phenotypes than those of either single mutant, suggesting that the function of AtPOLD1 and AtPOL2A is not identical in meiotic recombination. Given that POL σ is highly conserved among eukaryotes, we hypothesize that the described role of POL σ here in meiotic recombination likely exists widely in eukaryotes.
AB - Meiotic recombination contributes to the maintenance of the association between homologous chromosomes (homologs) and ensures the accurate segregation of homologs during anaphase I, thus facilitating the redistribution of alleles among progeny. Meiotic recombination is initiated by the programmed formation of DNA double strand breaks, the repair of which requires DNA synthesis, but the role of DNA synthesis proteins during meiosis is largely unknown. Here, we hypothesized that the lagging strand-specific DNA Polymerase d (POL d) might be required for meiotic recombination, based on a previous analysis of DNA Replication Factor1 that suggested a role for lagging strand synthesis in meiotic recombination. In Arabidopsis (Arabidopsis thaliana), complete mutation of the catalytic subunit of POL d, encoded by AtPOLD1, leads to embryo lethality. Therefore, we used a meiocyte-specific knockdown strategy to test this hypothesis. Reduced expression of AtPOLD1 in meiocytes caused decreased fertility and meiotic defects, including incomplete synapsis, the formation of multivalents, chromosome fragmentation, and improper segregation. Analysis of meiotic crossover (CO) frequencies showed that AtPOLD1 RNAi plants had significantly fewer interference-sensitive COs than the wild type, indicating that AtPOL σ participates in type I CO formation. AtPOLD1RNAi atpol2a double mutant meiocytes displayed more severe meiotic phenotypes than those of either single mutant, suggesting that the function of AtPOLD1 and AtPOL2A is not identical in meiotic recombination. Given that POL σ is highly conserved among eukaryotes, we hypothesize that the described role of POL σ here in meiotic recombination likely exists widely in eukaryotes.
UR - http://www.scopus.com/inward/record.url?scp=85060904506&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85060904506&partnerID=8YFLogxK
U2 - 10.1104/pp.18.00861
DO - 10.1104/pp.18.00861
M3 - Article
C2 - 30459265
AN - SCOPUS:85060904506
SN - 0032-0889
VL - 179
SP - 446
EP - 459
JO - Plant physiology
JF - Plant physiology
IS - 2
ER -