TY - JOUR
T1 - The notion of motion
T2 - covariational reasoning and the limit concept
AU - Nagle, Courtney
AU - Tracy, Tyler
AU - Adams, Gregory
AU - Scutella, Daniel
N1 - Publisher Copyright:
© 2016 Informa UK Limited, trading as Taylor & Francis Group.
PY - 2017/5/19
Y1 - 2017/5/19
N2 - This paper investigates outcomes of building students’ intuitive understanding of a limit as a function's predicted value by examining introductory calculus students’ conceptions of limit both before and after instruction. Students’ responses suggest that while this approach is successful at reducing the common limit equals function value misconception of a limit, new misconceptions emerged in students’ responses. Analysis of students’ reasoning indicates a lack of covariational reasoning that coordinates changes in both x and y may be at the root of the emerging limit reached near x = c misconception. These results suggest that although dynamic interpretations of limit may be intuitive for many students, care must be taken to foster a dynamic conception that is both useful at the introductory calculus level and is in line with the formal notion of limit learned in advanced mathematics. In light of the findings, suggestions for adapting the pedagogical approach used in this study are provided.
AB - This paper investigates outcomes of building students’ intuitive understanding of a limit as a function's predicted value by examining introductory calculus students’ conceptions of limit both before and after instruction. Students’ responses suggest that while this approach is successful at reducing the common limit equals function value misconception of a limit, new misconceptions emerged in students’ responses. Analysis of students’ reasoning indicates a lack of covariational reasoning that coordinates changes in both x and y may be at the root of the emerging limit reached near x = c misconception. These results suggest that although dynamic interpretations of limit may be intuitive for many students, care must be taken to foster a dynamic conception that is both useful at the introductory calculus level and is in line with the formal notion of limit learned in advanced mathematics. In light of the findings, suggestions for adapting the pedagogical approach used in this study are provided.
UR - http://www.scopus.com/inward/record.url?scp=85003899061&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85003899061&partnerID=8YFLogxK
U2 - 10.1080/0020739X.2016.1262469
DO - 10.1080/0020739X.2016.1262469
M3 - Article
AN - SCOPUS:85003899061
SN - 0020-739X
VL - 48
SP - 573
EP - 586
JO - International Journal of Mathematical Education in Science and Technology
JF - International Journal of Mathematical Education in Science and Technology
IS - 4
ER -