TY - JOUR
T1 - The opioid growth factor, [Met5]-enkephalin, and the ζ (zeta) opioid receptor are present in human and mouse skin and tonically act to inhibit DNA synthesis in the epidermis
AU - Zagon, Ian S.
AU - Wu, Yan
AU - McLaughlin, Patricia J.
PY - 1996
Y1 - 1996
N2 - Opioid peptides serve as tonically active negative growth factors in neural and non-neural cells, in addition to being neuromodulators. To investigate the involvement of opioids in homeostatic renewal of epithelial cells in the epidermis, mice were given systemic injections of the potent opioid antagonist, naltrexone (NTX) (20 mg/kg). Disruption of opioid-receptor interaction by NTX resulted in an elevation of 42 and 72% in DNA synthesis in skin from the dorsum and plantar surface of the hindfoot, respectively, within 2 h; response to NTX was dependent on the circadian rhythm in each region examined. Injection of the naturally occurring and potent opioid growth factor (OGF), [Met5]-enkephalin, at 1 mg/kg depressed DNA synthesis in the dorsum and plantar surface by 42 and 19%, respectively, within 2 h; the effects of OGF complied with the pattern of circadian rhythm in each area of skin. The decreases in labeling index evoked by OGF were blocked by concomitant administration of the opioid antagonist, naloxone (10 mg/kg); naloxone alone at the dosage utilized had no influence on cell replicative processes. In tissue culture studies, OGF and NTX respectively depressed and elevated DNA synthesis. Both OGF and its receptor, ζ, were detected in all but the cornified layer of the epidermis in murine skin from the dorsum, plantar surface, pinnae, and tail. In addition, both peptide and receptor were observed in basal and suprabasal cells of the human epidermis. These results lead to the suggestion that an endogenous opioid peptide and its receptor are present and govern cellular renewal processes in the skin in a direct manner, regulating DNA synthesis in a tonically inhibitory, circadian rhythm-dependent fashion.
AB - Opioid peptides serve as tonically active negative growth factors in neural and non-neural cells, in addition to being neuromodulators. To investigate the involvement of opioids in homeostatic renewal of epithelial cells in the epidermis, mice were given systemic injections of the potent opioid antagonist, naltrexone (NTX) (20 mg/kg). Disruption of opioid-receptor interaction by NTX resulted in an elevation of 42 and 72% in DNA synthesis in skin from the dorsum and plantar surface of the hindfoot, respectively, within 2 h; response to NTX was dependent on the circadian rhythm in each region examined. Injection of the naturally occurring and potent opioid growth factor (OGF), [Met5]-enkephalin, at 1 mg/kg depressed DNA synthesis in the dorsum and plantar surface by 42 and 19%, respectively, within 2 h; the effects of OGF complied with the pattern of circadian rhythm in each area of skin. The decreases in labeling index evoked by OGF were blocked by concomitant administration of the opioid antagonist, naloxone (10 mg/kg); naloxone alone at the dosage utilized had no influence on cell replicative processes. In tissue culture studies, OGF and NTX respectively depressed and elevated DNA synthesis. Both OGF and its receptor, ζ, were detected in all but the cornified layer of the epidermis in murine skin from the dorsum, plantar surface, pinnae, and tail. In addition, both peptide and receptor were observed in basal and suprabasal cells of the human epidermis. These results lead to the suggestion that an endogenous opioid peptide and its receptor are present and govern cellular renewal processes in the skin in a direct manner, regulating DNA synthesis in a tonically inhibitory, circadian rhythm-dependent fashion.
UR - http://www.scopus.com/inward/record.url?scp=0029872099&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029872099&partnerID=8YFLogxK
U2 - 10.1111/1523-1747.ep12343712
DO - 10.1111/1523-1747.ep12343712
M3 - Article
C2 - 8648182
AN - SCOPUS:0029872099
SN - 0022-202X
VL - 106
SP - 490
EP - 497
JO - Journal of Investigative Dermatology
JF - Journal of Investigative Dermatology
IS - 3
ER -