The Optical Light Curve of GRB 221009A: The Afterglow and the Emerging Supernova

M. D. Fulton, S. J. Smartt, L. Rhodes, M. E. Huber, V. A. Villar, T. Moore, S. Srivastav, A. S.B. Schultz, K. C. Chambers, L. Izzo, J. Hjorth, T. W. Chen, M. Nicholl, R. J. Foley, A. Rest, K. W. Smith, D. R. Young, S. A. Sim, J. Bright, Y. ZenatiT. de Boer, J. Bulger, J. Fairlamb, H. Gao, C. C. Lin, T. Lowe, E. A. Magnier, I. A. Smith, R. Wainscoat, D. A. Coulter, D. O. Jones, C. D. Kilpatrick, P. McGill, E. Ramirez-Ruiz, K. S. Lee, G. Narayan, V. Ramakrishnan, R. Ridden-Harper, A. Singh, Q. Wang, A. K.H. Kong, C. C. Ngeow, Y. C. Pan, S. Yang, K. W. Davis, A. L. Piro, C. Rojas-Bravo, J. Sommer, S. K. Yadavalli

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

We present extensive optical photometry of the afterglow of GRB 221009A. Our data cover 0.9-59.9 days from the time of Swift and Fermi gamma-ray burst (GRB) detections. Photometry in rizy-band filters was collected primarily with Pan-STARRS and supplemented by multiple 1-4 m imaging facilities. We analyzed the Swift X-ray data of the afterglow and found a single decline rate power law f(t) ∝ t −1.556±0.002 best describes the light curve. In addition to the high foreground Milky Way dust extinction along this line of sight, the data favor additional extinction to consistently model the optical to X-ray flux with optically thin synchrotron emission. We fit the X-ray-derived power law to the optical light curve and find good agreement with the measured data up to 5−6 days. Thereafter we find a flux excess in the riy bands that peaks in the observer frame at ∼20 days. This excess shares similar light-curve profiles to the Type Ic broad-lined supernovae SN 2016jca and SN 2017iuk once corrected for the GRB redshift of z = 0.151 and arbitrarily scaled. This may be representative of an SN emerging from the declining afterglow. We measure rest-frame absolute peak AB magnitudes of M g = −19.8 ± 0.6 and M r = − 19.4 ± 0.3 and M z = −20.1 ± 0.3. If this is an SN component, then Bayesian modeling of the excess flux would imply explosion parameters of M ej = 7.1 − 1.7 + 2.4 M , M Ni = 1.0 − 0.4 + 0.6 M , and v ej = 33,900 − 5700 + 5900 km s−1, for the ejecta mass, nickel mass, and ejecta velocity respectively, inferring an explosion energy of E kin ≃ 2.6-9.0 × 1052 erg.

Original languageEnglish (US)
Article numberL22
JournalAstrophysical Journal Letters
Volume946
Issue number1
DOIs
StatePublished - Mar 1 2023

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this