TY - JOUR
T1 - The organoselenium compound 1,4-phenylenebis(methylene)selenocyanate inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced tumorgenesis and enhances glutathione-related antioxidant levels in A/J mouse lung
AU - Richie, John P.
AU - Kleinman, Wayne
AU - Desai, Dhimant H.
AU - Das, Arunangshu
AU - Amin, Shantu G.
AU - Pinto, John T.
AU - El-Bayoumy, Karam
N1 - Funding Information:
This study was supported by National Cancer Institute PO1 grant CA70972.
PY - 2006/6/10
Y1 - 2006/6/10
N2 - Selenium, in the form of 1,4-phenylenebis(methylene)selenocyanate (p-XSC) but not Se-enriched yeast (Se-yeast), was highly effective at inhibiting lung tumors induced by the tobacco specific nitrosamine (TSNA) 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in A/J mice and at reducing NNK-induced DNA methylation and 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels in the lung. Our goal was to determine if p-XSC but not Se-yeast is effective at inducing levels of glutathione (GSH)-related antioxidants and reducing markers of GSH oxidation in the NNK-induced lung tumor model. In the first bioassay, 6-week-old mice were fed either control or experimental diets (containing 10 ppm as selenium from p-XSC or Se-yeast) and, beginning at 8 weeks of age, received NNK (3 μmol) by gavage once weekly for 8 weeks. After 18 weeks, p-XSC significantly reduced NNK-induced tumor burden by 74% (10.4 ± 6.0 versus 2.7 ± 1.5 tumors/mouse, P < 0.001) and tumor incidence from 96% to 68% (P < 0.01), whereas, Se-yeast had no effect. Lung GSH levels were unchanged by either NNK or Se-yeast, but were increased 70% in mice treated with both NNK and p-XSC (P < 0.01) and 41% in mice treated with p-XSC alone. In the second bioassay, the time course of effects of p-XSC was examined. As early as one week after initiation of p-XSC feeding lung and blood selenium levels were increased nearly six- and two-fold, respectively. Increases of 120% for GSH and 65% for Cys were observed in p-XSC groups compared to controls within one week after initiation of p-XSC feeding (P < 0.01). The levels of protein-bound:free GSH ratios and Cys ratios were significantly decreased in p-XSC-treated mice, regardless of NNK status, suggesting a decrease in the levels of oxidative stress. Altogether, these results indicate that p-XSC is a potent inducer of GSH and related thiol antioxidants in the lung leading to decreased levels of oxidative stress and suggest that p-XSC inhibits tumor formation, in part, by protecting against oxidative damage.
AB - Selenium, in the form of 1,4-phenylenebis(methylene)selenocyanate (p-XSC) but not Se-enriched yeast (Se-yeast), was highly effective at inhibiting lung tumors induced by the tobacco specific nitrosamine (TSNA) 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in A/J mice and at reducing NNK-induced DNA methylation and 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels in the lung. Our goal was to determine if p-XSC but not Se-yeast is effective at inducing levels of glutathione (GSH)-related antioxidants and reducing markers of GSH oxidation in the NNK-induced lung tumor model. In the first bioassay, 6-week-old mice were fed either control or experimental diets (containing 10 ppm as selenium from p-XSC or Se-yeast) and, beginning at 8 weeks of age, received NNK (3 μmol) by gavage once weekly for 8 weeks. After 18 weeks, p-XSC significantly reduced NNK-induced tumor burden by 74% (10.4 ± 6.0 versus 2.7 ± 1.5 tumors/mouse, P < 0.001) and tumor incidence from 96% to 68% (P < 0.01), whereas, Se-yeast had no effect. Lung GSH levels were unchanged by either NNK or Se-yeast, but were increased 70% in mice treated with both NNK and p-XSC (P < 0.01) and 41% in mice treated with p-XSC alone. In the second bioassay, the time course of effects of p-XSC was examined. As early as one week after initiation of p-XSC feeding lung and blood selenium levels were increased nearly six- and two-fold, respectively. Increases of 120% for GSH and 65% for Cys were observed in p-XSC groups compared to controls within one week after initiation of p-XSC feeding (P < 0.01). The levels of protein-bound:free GSH ratios and Cys ratios were significantly decreased in p-XSC-treated mice, regardless of NNK status, suggesting a decrease in the levels of oxidative stress. Altogether, these results indicate that p-XSC is a potent inducer of GSH and related thiol antioxidants in the lung leading to decreased levels of oxidative stress and suggest that p-XSC inhibits tumor formation, in part, by protecting against oxidative damage.
UR - http://www.scopus.com/inward/record.url?scp=33646826380&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33646826380&partnerID=8YFLogxK
U2 - 10.1016/j.cbi.2006.03.005
DO - 10.1016/j.cbi.2006.03.005
M3 - Article
C2 - 16620795
AN - SCOPUS:33646826380
SN - 0009-2797
VL - 161
SP - 93
EP - 103
JO - Chemico-Biological Interactions
JF - Chemico-Biological Interactions
IS - 2
ER -