TY - JOUR
T1 - The origin of T tauri X-ray emission
T2 - New insights from the chandra orion ultradeep project
AU - Preibisch, Thomas
AU - Kim, Yong Cheol
AU - Favata, Fabio
AU - Feigelson, Eric D.
AU - Flaccomio, Ettore
AU - Getman, Konstantin
AU - Micela, Giusi
AU - Sciortino, Salvatore
AU - Stassun, Keivan
AU - Stelzer, Beate
AU - Zinnecker, Hans
PY - 2005/10
Y1 - 2005/10
N2 - The Chandra Orion Ultradeep Project (COUP) provides the most comprehensive data set ever acquired on the X-ray emission of pre-main-sequence stars. In this paper, we study the nearly 600 X-ray sources that can be reliably identified with optically well-characterized T Tauri stars (TTSs) in the Orion Nebula Cluster. With a detection limit of L X, min ∼ 10 27.3 ergs s -1 for lightly absorbed sources, we detect X-ray emission from more than 97% of the optically visible late-type (spectral types F-M) cluster stars. This proves that there is no "X-ray-quiet" population of late-type stars with suppressed magnetic activity. We use this exceptional optical, infrared, and X-ray data set to study the dependencies of the X-ray properties on other stellar parameters. All TTSs with known rotation periods lie in the saturated or supersaturated regime of the relation between activity and Rossby numbers seen for main-sequence (MS) stars, but the TTSs show a much larger scatter in X-ray activity than that seen for the MS stars. Strong near-linear relations between X-ray luminosities, bolometric luminosities, and mass are present. We also find that the fractional X-ray luminosity L X/L bol rises slowly with mass over the 0.1-2 M ⊙ range. The plasma temperatures determined from the X-ray spectra of the TTSs are much hotter than in MS stars but seem to follow a general solar-stellar correlation between plasma temperature and activity level. The scatter about the relations between X-ray activity and stellar parameters is larger than the expected effects of X-ray variability, uncertainties in the variables, and unresolved binaries. This large scatter seems to be related to the influence of accretion on the X-ray emission. While the X-ray activity of the nonaccreting TTSs is consistent with that of rapidly rotating MS stars, the accreting stars are less X-ray active (by a factor of ∼2-3 on average) and produce much less well-defined correlations than the nonaccretors. We discuss possible reasons for the suppression of X-ray emission by accretion and the implications of our findings on long-standing questions related to the origin of the X-ray emission from young stars, considering in particular the location of the X-ray-emitting structures and inferences for pre-main-sequence magnetic dynamos.
AB - The Chandra Orion Ultradeep Project (COUP) provides the most comprehensive data set ever acquired on the X-ray emission of pre-main-sequence stars. In this paper, we study the nearly 600 X-ray sources that can be reliably identified with optically well-characterized T Tauri stars (TTSs) in the Orion Nebula Cluster. With a detection limit of L X, min ∼ 10 27.3 ergs s -1 for lightly absorbed sources, we detect X-ray emission from more than 97% of the optically visible late-type (spectral types F-M) cluster stars. This proves that there is no "X-ray-quiet" population of late-type stars with suppressed magnetic activity. We use this exceptional optical, infrared, and X-ray data set to study the dependencies of the X-ray properties on other stellar parameters. All TTSs with known rotation periods lie in the saturated or supersaturated regime of the relation between activity and Rossby numbers seen for main-sequence (MS) stars, but the TTSs show a much larger scatter in X-ray activity than that seen for the MS stars. Strong near-linear relations between X-ray luminosities, bolometric luminosities, and mass are present. We also find that the fractional X-ray luminosity L X/L bol rises slowly with mass over the 0.1-2 M ⊙ range. The plasma temperatures determined from the X-ray spectra of the TTSs are much hotter than in MS stars but seem to follow a general solar-stellar correlation between plasma temperature and activity level. The scatter about the relations between X-ray activity and stellar parameters is larger than the expected effects of X-ray variability, uncertainties in the variables, and unresolved binaries. This large scatter seems to be related to the influence of accretion on the X-ray emission. While the X-ray activity of the nonaccreting TTSs is consistent with that of rapidly rotating MS stars, the accreting stars are less X-ray active (by a factor of ∼2-3 on average) and produce much less well-defined correlations than the nonaccretors. We discuss possible reasons for the suppression of X-ray emission by accretion and the implications of our findings on long-standing questions related to the origin of the X-ray emission from young stars, considering in particular the location of the X-ray-emitting structures and inferences for pre-main-sequence magnetic dynamos.
UR - http://www.scopus.com/inward/record.url?scp=27644469030&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=27644469030&partnerID=8YFLogxK
U2 - 10.1086/432891
DO - 10.1086/432891
M3 - Article
AN - SCOPUS:27644469030
SN - 0067-0049
VL - 160
SP - 401
EP - 422
JO - Astrophysical Journal, Supplement Series
JF - Astrophysical Journal, Supplement Series
IS - 2
ER -