TY - JOUR
T1 - The Orinoco Low-Level Jet
T2 - An Investigation of Its Mechanisms of Formation Using the WRF Model
AU - Jiménez-Sánchez, Giovanni
AU - Markowski, Paul M.
AU - Young, George S.
AU - Stensrud, David J.
N1 - Publisher Copyright:
©2020. American Geophysical Union. All Rights Reserved.
PY - 2020/7/16
Y1 - 2020/7/16
N2 - The Orinoco low-level jet (OLLJ) is characterized using finer horizontal, vertical, and temporal resolution than possible in previous studies via dynamical downscaling. The investigation relies on a 5-month-long simulation (November 2013 to March 2014) performed with the Weather Research and Forecasting (WRF) model, with initial and boundary conditions provided by the Global Forecast System (GFS) analysis. Dynamical downscaling is demonstrated to be an effective method not only to better resolve the horizontal and vertical characteristics of the OLLJ but also to determine the mechanisms leading to its formation. The OLLJ is a single stream tube over Colombia and Venezuela with wind speeds greater than 8 m s−1 and four distinctive cores of higher wind speeds varying in height under the influence of sloping terrain. It is an austral summer phenomenon that exhibits its seasonal maximum wind speed and largest spatial extent (2,100 km × 450 km) in January. The maximum diurnal mean wind speeds (13–17 m s−1) at each core location occur at different times during the night and early morning (2300–0900 LST). The momentum balance analysis in a natural coordinate system reveals that the OLLJ results from four phenomena acting together to accelerate the wind: a sea breeze penetration, katabatic flow, three expansion fans, and diurnal variation of turbulent diffusivity. The latter, in contrast to the heavily studied nocturnal low-level jet in the U.S. Great Plains region, plays a secondary role in OLLJ acceleration. These results imply that LLJs near the equator may originate from processes other than the inertial oscillation and topographic thermal forcing.
AB - The Orinoco low-level jet (OLLJ) is characterized using finer horizontal, vertical, and temporal resolution than possible in previous studies via dynamical downscaling. The investigation relies on a 5-month-long simulation (November 2013 to March 2014) performed with the Weather Research and Forecasting (WRF) model, with initial and boundary conditions provided by the Global Forecast System (GFS) analysis. Dynamical downscaling is demonstrated to be an effective method not only to better resolve the horizontal and vertical characteristics of the OLLJ but also to determine the mechanisms leading to its formation. The OLLJ is a single stream tube over Colombia and Venezuela with wind speeds greater than 8 m s−1 and four distinctive cores of higher wind speeds varying in height under the influence of sloping terrain. It is an austral summer phenomenon that exhibits its seasonal maximum wind speed and largest spatial extent (2,100 km × 450 km) in January. The maximum diurnal mean wind speeds (13–17 m s−1) at each core location occur at different times during the night and early morning (2300–0900 LST). The momentum balance analysis in a natural coordinate system reveals that the OLLJ results from four phenomena acting together to accelerate the wind: a sea breeze penetration, katabatic flow, three expansion fans, and diurnal variation of turbulent diffusivity. The latter, in contrast to the heavily studied nocturnal low-level jet in the U.S. Great Plains region, plays a secondary role in OLLJ acceleration. These results imply that LLJs near the equator may originate from processes other than the inertial oscillation and topographic thermal forcing.
UR - http://www.scopus.com/inward/record.url?scp=85087685665&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85087685665&partnerID=8YFLogxK
U2 - 10.1029/2020JD032810
DO - 10.1029/2020JD032810
M3 - Article
AN - SCOPUS:85087685665
SN - 2169-897X
VL - 125
JO - Journal of Geophysical Research: Atmospheres
JF - Journal of Geophysical Research: Atmospheres
IS - 13
M1 - e2020JD032810
ER -