TY - JOUR
T1 - The photoeccentric effect and proto-hot jupiters. I. Measuring photometric eccentricities of individual transiting planets
AU - Dawson, Rebekah I.
AU - Johnson, John Asher
PY - 2012/9/10
Y1 - 2012/9/10
N2 - Exoplanet orbital eccentricities offer valuable clues about the history of planetary systems. Eccentric, Jupiter-sized planets are particularly interesting: they may link the "cold" Jupiters beyond the ice line to close-in hot Jupiters, which are unlikely to have formed in situ. To date, eccentricities of individual transiting planets primarily come from radial-velocity measurements. Kepler has discovered hundreds of transiting Jupiters spanning a range of periods, but the faintness of the host stars precludes radial-velocity follow-up of most. Here, we demonstrate a Bayesian method of measuring an individual planet's eccentricity solely from its transit light curve using prior knowledge of its host star's density. We show that eccentric Jupiters are readily identified by their short ingress/egress/total transit durations - part of the "photoeccentric" light curve signature of a planet's eccentricity - even with long-cadence Kepler photometry and loosely constrained stellar parameters. A Markov Chain Monte Carlo exploration of parameter posteriors naturally marginalizes over the periapse angle and automatically accounts for the transit probability. To demonstrate, we use three published transit light curves of HD17156b to measure an eccentricity of e = 0.71+0.16 -0.09, in good agreement with the discovery value e = 0.67 ± 0.08 based on 33 radial-velocity measurements. We present two additional tests using Kepler data. In each case, the technique proves to be a viable method of measuring exoplanet eccentricities and their confidence intervals. Finally, we argue that this method is the most efficient, effective means of identifying the extremely eccentric, proto-hot Jupiters predicted by Socrates etal.
AB - Exoplanet orbital eccentricities offer valuable clues about the history of planetary systems. Eccentric, Jupiter-sized planets are particularly interesting: they may link the "cold" Jupiters beyond the ice line to close-in hot Jupiters, which are unlikely to have formed in situ. To date, eccentricities of individual transiting planets primarily come from radial-velocity measurements. Kepler has discovered hundreds of transiting Jupiters spanning a range of periods, but the faintness of the host stars precludes radial-velocity follow-up of most. Here, we demonstrate a Bayesian method of measuring an individual planet's eccentricity solely from its transit light curve using prior knowledge of its host star's density. We show that eccentric Jupiters are readily identified by their short ingress/egress/total transit durations - part of the "photoeccentric" light curve signature of a planet's eccentricity - even with long-cadence Kepler photometry and loosely constrained stellar parameters. A Markov Chain Monte Carlo exploration of parameter posteriors naturally marginalizes over the periapse angle and automatically accounts for the transit probability. To demonstrate, we use three published transit light curves of HD17156b to measure an eccentricity of e = 0.71+0.16 -0.09, in good agreement with the discovery value e = 0.67 ± 0.08 based on 33 radial-velocity measurements. We present two additional tests using Kepler data. In each case, the technique proves to be a viable method of measuring exoplanet eccentricities and their confidence intervals. Finally, we argue that this method is the most efficient, effective means of identifying the extremely eccentric, proto-hot Jupiters predicted by Socrates etal.
UR - http://www.scopus.com/inward/record.url?scp=84865609906&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84865609906&partnerID=8YFLogxK
U2 - 10.1088/0004-637X/756/2/122
DO - 10.1088/0004-637X/756/2/122
M3 - Article
AN - SCOPUS:84865609906
SN - 0004-637X
VL - 756
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 122
ER -