TY - GEN
T1 - The Power of Unentangled Quantum Proofs with Non-negative Amplitudes
AU - Jeronimo, Fernando Granha
AU - Wu, Pei
N1 - Publisher Copyright:
© 2023 ACM.
PY - 2023/6/2
Y1 - 2023/6/2
N2 - Quantum entanglement is a fundamental property of quantum mechanics and it serves as a basic resource in quantum computation and information. Despite its importance, the power and limitations of quantum entanglement are far from being fully understood. Here, we study entanglement via the lens of computational complexity. This is done by studying quantum generalizations of the class NP with multiple unentangled quantum proofs, the so-called QMA(2) and its variants. The complexity of QMA(2) is known to be closely connected to a variety of problems such as deciding if a state is entangled and several classical optimization problems. However, determining the complexity of QMA(2) is a longstanding open problem, and only the trivial complexity bounds † (2) † are known. In this work, we study the power of unentangled quantum proofs with non-negative amplitudes, a class which we denote QMA+(2). In this setting, we are able to design proof verification protocols for (increasingly) hard problems both using logarithmic size quantum proofs and having a constant probability gap in distinguishing yes from no instances. In particular, we design global protocols for small set expansion (SSE), unique games (UG), and PCP verification. As a consequence, we obtain NP † QMAlog+(2) with a constant gap. By virtue of the new constant gap, we are able to "scale up"this result to QMA+(2), obtaining the full characterization QMA+(2)=NEXP by establishing stronger explicitness properties of the for . We believe that our protocols are interesting examples of proof verification and property testing in their own right. Moreover, each of our protocols has a single isolated property testing task relying on non-negative amplitudes which if generalized would allow transferring our results to QMA(2). One key novelty of these protocols is the manipulation of quantum proofs in a global and coherent way yielding constant gaps. Previous protocols (only available for general amplitudes) are either local having vanishingly small gaps or treating the quantum proofs as classical probability distributions requiring polynomially many proofs. In both cases, these known protocols do not imply non-trivial bounds on QMA(2).
AB - Quantum entanglement is a fundamental property of quantum mechanics and it serves as a basic resource in quantum computation and information. Despite its importance, the power and limitations of quantum entanglement are far from being fully understood. Here, we study entanglement via the lens of computational complexity. This is done by studying quantum generalizations of the class NP with multiple unentangled quantum proofs, the so-called QMA(2) and its variants. The complexity of QMA(2) is known to be closely connected to a variety of problems such as deciding if a state is entangled and several classical optimization problems. However, determining the complexity of QMA(2) is a longstanding open problem, and only the trivial complexity bounds † (2) † are known. In this work, we study the power of unentangled quantum proofs with non-negative amplitudes, a class which we denote QMA+(2). In this setting, we are able to design proof verification protocols for (increasingly) hard problems both using logarithmic size quantum proofs and having a constant probability gap in distinguishing yes from no instances. In particular, we design global protocols for small set expansion (SSE), unique games (UG), and PCP verification. As a consequence, we obtain NP † QMAlog+(2) with a constant gap. By virtue of the new constant gap, we are able to "scale up"this result to QMA+(2), obtaining the full characterization QMA+(2)=NEXP by establishing stronger explicitness properties of the for . We believe that our protocols are interesting examples of proof verification and property testing in their own right. Moreover, each of our protocols has a single isolated property testing task relying on non-negative amplitudes which if generalized would allow transferring our results to QMA(2). One key novelty of these protocols is the manipulation of quantum proofs in a global and coherent way yielding constant gaps. Previous protocols (only available for general amplitudes) are either local having vanishingly small gaps or treating the quantum proofs as classical probability distributions requiring polynomially many proofs. In both cases, these known protocols do not imply non-trivial bounds on QMA(2).
UR - http://www.scopus.com/inward/record.url?scp=85163129649&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85163129649&partnerID=8YFLogxK
U2 - 10.1145/3564246.3585248
DO - 10.1145/3564246.3585248
M3 - Conference contribution
AN - SCOPUS:85163129649
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 1629
EP - 1642
BT - STOC 2023 - Proceedings of the 55th Annual ACM Symposium on Theory of Computing
A2 - Saha, Barna
A2 - Servedio, Rocco A.
PB - Association for Computing Machinery
T2 - 55th Annual ACM Symposium on Theory of Computing, STOC 2023
Y2 - 20 June 2023 through 23 June 2023
ER -