The QCD phase diagram for external magnetic fields

G. S. Bali, F. Bruckmann, G. Endrödi, Z. Fodor, S. D. Katz, S. Krieg, A. Schäfer, K. K. Szabó

Research output: Contribution to journalArticlepeer-review

564 Scopus citations

Abstract

The effect of an external (electro)magnetic field on the finite temperature transition of QCD is studied. We generate configurations at various values of the quantized magnetic flux with N f = 2 + 1 flavors of stout smeared staggered quarks, with physical masses. Thermodynamic observables including the chiral condensate and susceptibility, and the strange quark number susceptibility are measured as functions of the field strength. We perform the renormalization of the studied observables and extrapolate the results to the continuum limit using N t = 6, 8 and 10 lattices. We also check for finite volume effects using various lattice volumes. We find from all of our observables that the transition temperature T c significantly decreases with increasing magnetic field. This is in conflict with various model calculations that predict an increasing T c(B). From a finite volume scaling analysis we find that the analytic crossover that is present at B = 0 persists up to our largest magnetic fields eB ≈ 1 GeV2, and that the transition strength increases mildly up to this eB ≈ 1 GeV 2.

Original languageEnglish (US)
Article number44
JournalJournal of High Energy Physics
Volume2012
Issue number2
DOIs
StatePublished - 2012

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'The QCD phase diagram for external magnetic fields'. Together they form a unique fingerprint.

Cite this