The Relative Effectiveness of pH Control and Heat Treatment for Enhancing Biohydrogen Gas Production

Sang Eun Oh, Steven Van Ginkel, Bruce E. Logan

Research output: Contribution to journalArticlepeer-review

454 Scopus citations


Hydrogen gas can be recovered from the microbial fermentation of organic substrates at high concentrations when interspecies hydrogen transfer to methanogens is prevented. Two techniques that have been used to limit methanogenesis in mixed cultures are heat treatment, to remove nonsporeforming methanogens from an inoculum, and low pH during culture growth. We found that high hydrogen gas concentrations (57-72%) were produced in all tests and that heat treatment (HT) of the inoculum (pH 6.2 or 7.5) produced greater hydrogen yields than low pH (6.2) conditions with a nonheat-treated inoculum (NHT). Conversion efficiencies of glucose to hydrogen (based on a theoretical yield of 4 mol-H2/mol-glucose) were as follows: 24.2% (HT, pH = 6.2), 18.5% (HT, pH = 7.5), 14.9% (NHT, pH = 6.2), and 12.1% (NHT, pH = 7.5). The main products of glucose (3 g-COD/L) utilization (>99%) in batch tests were acetate (3.4-24.1%), butyrate (6.4-29.4%), propionate (0.3-12.8%), ethanol (15.4-28.8%), and hydrogen (4.0-8.1%), with lesser amounts of acetone, propanol, and butanol (COD basis). Hydrogen gas phase concentrations in all batch cultures reached a maximum of 57-72% after 30 h but thereafter rapidly declined to nondetectable levels within 80 h. Separate experiments showed substantial hydrogen losses could occur via acetogenesis and that heat treatment did not prevent acetogenesis. Heat treatment consistently eliminated the production of measurable concentrations of methane. The disappearance of ethanol produced during hydrogen production was likely due to acetic acid production as thermodynamic calculations show that this reaction is spontaneous once hydrogen is depleted. Overall, these results show that low pH was, without heat treatment, sufficient to control hydrogen losses to methanogens in mixed batch cultures and suggest that methods will need to be found to limit acetogenesis in order to increase hydrogen gas yields by batch cultures.

Original languageEnglish (US)
Pages (from-to)5186-5190
Number of pages5
JournalEnvironmental Science and Technology
Issue number22
StatePublished - Nov 15 2003

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Environmental Chemistry


Dive into the research topics of 'The Relative Effectiveness of pH Control and Heat Treatment for Enhancing Biohydrogen Gas Production'. Together they form a unique fingerprint.

Cite this