The remote allosteric control of Orai channel gating

Yandong Zhou, Robert M. Nwokonko, James H. Baraniak, Mohamed Trebak, Kenneth P.K. Lee, Donald L. Gill

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Calcium signals drive an endless array of cellular responses including secretion, contraction, transcription, cell division, and growth. The ubiquitously expressed Orai family of plasma membrane (PM) ion channels mediate Ca2+ entry signals triggered by the Ca2+ sensor Stromal Interaction Molecule (STIM) proteins of the endoplasmic reticulum (ER). The 2 proteins interact within curiously obscure ER-PM junctions, driving an allosteric gating mechanism for the Orai channel. Although key to Ca2+ signal generation, molecular understanding of this activation process remain obscure. Crystallographic structural analyses reveal much about the exquisite hexameric core structure of Orai channels. But how STIM proteins bind to the channel periphery and remotely control opening of the central pore, has eluded such analysis. Recent studies apply both crystallography and single-particle cryogenic electron microscopy (cryo-EM) analyses to probe the structure of Orai mutants that mimic activation by STIM. The results provide new understanding on the open state of the channel and how STIM proteins may exert remote allosteric control of channel gating.

Original languageEnglish (US)
Article numbere3000413
JournalPLoS biology
Volume17
Issue number8
DOIs
StatePublished - Aug 30 2019

All Science Journal Classification (ASJC) codes

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'The remote allosteric control of Orai channel gating'. Together they form a unique fingerprint.

Cite this