The role of diisocyanate structure on microphase separation of solution polymerized polyureas

Yong He, Xinya Zhang, James Runt

Research output: Contribution to journalArticlepeer-review

52 Scopus citations


Three diisocyanates with different symmetry and planarity (2,6-TDI, 2,4-TDI and MDI) were used to synthesize polyureas with the same oligomeric polyetheramine having a molecular weight of ∼1000 g/mol. The influence of diisocyanate symmetry on the phase separated morphology, hydrogen bonding behavior, and molecular dynamics were investigated. Symmetric diisocyanate structures facilitated self-assembly of hard segments into ribbon-like domains, driven by strong bidentate hydrogen bonding. The hard domains for the 2,6-TDI polymer appear to be continuous in AFM images, while the persistence length of the hard domains in the 2,4-TDI and MDI polymers gradually decrease, and fewer hard domains are apparent with decreasing hard segment symmetry. The extent of hard/soft segment demixing, assessed from small-angle X-ray scattering, was very incomplete for all of the polyureas and is significantly influenced by hard segment structure. For the 2,4- and 2,6-TDI polyureas, two segmental relaxations were observed using dielectric relaxation spectroscopy; one arising from relatively unrestricted motion in the soft segment rich phase, and a slower process associated with segments in the soft phase constrained by their attachment to hard domains.

Original languageEnglish (US)
Pages (from-to)906-913
Number of pages8
Issue number3
StatePublished - Feb 12 2014

All Science Journal Classification (ASJC) codes

  • Organic Chemistry
  • Polymers and Plastics
  • Materials Chemistry


Dive into the research topics of 'The role of diisocyanate structure on microphase separation of solution polymerized polyureas'. Together they form a unique fingerprint.

Cite this