TY - JOUR
T1 - The role of neutrophils in mediating stroke injury in the diabetic db/db mouse brain following hypoxia-ischemia
AU - Kumari, Rashmi
AU - Bettermann, Kerstin
AU - Willing, Lisa
AU - Sinha, Kusum
AU - Simpson, Ian A.
N1 - Funding Information:
The study is supported by American Diabetes Association, United States ( ADA1-11-BS- 146 ).
Publisher Copyright:
© 2020 Elsevier Ltd
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/10
Y1 - 2020/10
N2 - Diabetic mice exhibit increased mortality and morbidity following stroke. Recent studies from our laboratory have indicated that increased morbidity in diabetic db/db mice relative to their non-diabetic db/+ littermates is associated with increased levels of MMP-9 protease activity, increased blood-brain barrier (BBB) permeability, and greater neutrophil infiltration following hypoxic/ischemic (H/I) insult. Neutrophils are a major source of proteases and reactive oxygen species and studies have reported neutrophil depletion/inhibition is protective in certain models of experimental stroke. The objective of the current study is to determine the role of neutrophils in the increased morbidity seen in db/db mice following acute ischemic stroke. In this study, we found a significant increase in circulating neutrophils in the db/db mice at 4 h post H/I, which bound to endothelial cells in the ipsilateral hemisphere and infiltrated into brain tissue by 24 h of recovery. Depletion of circulating neutrophils resulted in reduced neutrophil concentrations in blood and in the ipsilateral hemispheres of the brain of both db/+ and db/db mice and decreased the levels of MMP-9 within the infarcted area. This resulted in smaller infarct size in the db/db mice compared to non-treated controls but did not affect stroke outcome in db/+ mice. While there was a significant correlation between neutrophil number and the levels of MMP-9 in the ipsilateral hemisphere of control and diabetic mice, surprisingly, neutrophil depletion had no effect on BBB permeability in either group. Thus, the current study suggests that neutrophil depletion reduces MMP-9 protease levels and improves stroke outcome in db/db mice but not in their db/+ counterparts.
AB - Diabetic mice exhibit increased mortality and morbidity following stroke. Recent studies from our laboratory have indicated that increased morbidity in diabetic db/db mice relative to their non-diabetic db/+ littermates is associated with increased levels of MMP-9 protease activity, increased blood-brain barrier (BBB) permeability, and greater neutrophil infiltration following hypoxic/ischemic (H/I) insult. Neutrophils are a major source of proteases and reactive oxygen species and studies have reported neutrophil depletion/inhibition is protective in certain models of experimental stroke. The objective of the current study is to determine the role of neutrophils in the increased morbidity seen in db/db mice following acute ischemic stroke. In this study, we found a significant increase in circulating neutrophils in the db/db mice at 4 h post H/I, which bound to endothelial cells in the ipsilateral hemisphere and infiltrated into brain tissue by 24 h of recovery. Depletion of circulating neutrophils resulted in reduced neutrophil concentrations in blood and in the ipsilateral hemispheres of the brain of both db/+ and db/db mice and decreased the levels of MMP-9 within the infarcted area. This resulted in smaller infarct size in the db/db mice compared to non-treated controls but did not affect stroke outcome in db/+ mice. While there was a significant correlation between neutrophil number and the levels of MMP-9 in the ipsilateral hemisphere of control and diabetic mice, surprisingly, neutrophil depletion had no effect on BBB permeability in either group. Thus, the current study suggests that neutrophil depletion reduces MMP-9 protease levels and improves stroke outcome in db/db mice but not in their db/+ counterparts.
UR - http://www.scopus.com/inward/record.url?scp=85088518391&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85088518391&partnerID=8YFLogxK
U2 - 10.1016/j.neuint.2020.104790
DO - 10.1016/j.neuint.2020.104790
M3 - Article
C2 - 32652270
AN - SCOPUS:85088518391
SN - 0197-0186
VL - 139
JO - Neurochemistry International
JF - Neurochemistry International
M1 - 104790
ER -