The role of oxidants and free radicals in reperfusion injury

Jay L. Zweier, M. A.Hassan Talukder

Research output: Contribution to journalReview articlepeer-review

618 Scopus citations

Abstract

While timely reperfusion of acute ischemic myocardium is essential for myocardial salvage, reperfusion results in a unique form of myocardial damage. Functional alterations occur, including depressed contractile function and decreased coronary flow as well as altered vascular reactivity. Both myocardial stunning and infarction are seen. Over the last two decades, it has become increasingly clear that oxidant and oxygen radical formation is greatly increased in the post-ischemic heart and serves as a critical central mechanism of post-ischemic injury. This oxidant formation is generated through a series of interacting pathways in cardiac myocytes and endothelial cells and triggers subsequent leukocyte chemotaxis and inflammation. Nitric oxide (NO) production and NO levels are also greatly increased in ischemic and post-ischemic myocardium, and this occurs through NO synthase (NOS)-dependent NO formation and NOS-independent nitrite reduction. Recently, it has been shown that the pathways of oxygen radical and NO generation interact and can modulate each other. Under conditions of oxidant stress, NOS can switch from NO to oxygen radical generation. Under ischemic conditions, xanthine oxidase can reduce nitrite to generate NO. NO and peroxynitrite can inhibit pathways of oxygen radical generation, and, in turn, oxidants can inhibit NO synthesis from NOS. Ischemic preconditioning markedly decreases NO and oxidant generation, and this appears to be an important mechanism contributing to preconditioning-induced myocardial protection.

Original languageEnglish (US)
Pages (from-to)181-190
Number of pages10
JournalCardiovascular Research
Volume70
Issue number2
DOIs
StatePublished - May 1 2006

All Science Journal Classification (ASJC) codes

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'The role of oxidants and free radicals in reperfusion injury'. Together they form a unique fingerprint.

Cite this