TY - JOUR
T1 - The role of selenoproteins in neutrophils during inflammation
AU - Lee, Tai Jung
AU - Nettleford, Shaneice K.
AU - McGlynn, Allison
AU - Carlson, Bradley A.
AU - Kirimanjeswara, Girish S.
AU - Prabhu, K. Sandeep
N1 - Publisher Copyright:
© 2022 Elsevier Inc.
PY - 2022/12/15
Y1 - 2022/12/15
N2 - Polymorphonuclear neutrophils (PMNs)-derived ROS are involved in the regulation of multiple functions of PMNs critical in both inflammation and its timely resolution. Selenium is an essential trace element that functions as a gatekeeper of cellular redox homeostasis in the form of selenoproteins. Despite their well-studied involvement in regulating functions of various immune cells, limited studies have focused on the regulation of selenoproteins in PMN and their associated functions. Ex-vivo treatment of murine primary bone marrow derived PMNs with bacterial endotoxin lipopolysaccharide (LPS) indicated temporal regulation of several selenoprotein genes at the mRNA level. However, only glutathione peroxidase 4 (Gpx4) was significantly upregulated, while Selenof, Selenow, and Gpx1 were significantly downregulated in a temporal manner at the protein level. Exposure of PMNs isolated from tRNASec (Trsp)fl/fl S100A8Cre (TrspN) PMN-specific selenoprotein knockout mice, to the Gram-negative bacterium, Citrobacter rodentium, showed decreased bacterial growth, reduced phagocytosis, as well as impaired neutrophil extracellular trap (NET) formation ability, when compared to the wild-type PMNs. Increased extracellular ROS production upon LPS stimulation was also observed in TrspN PMNs that was associated with upregulation of Alox12, Cox2, and iNOS, as well as proinflammatory cytokines such as TNFα and IL-1β. Our data indicate that the inhibition of selenoproteome expression results in alteration of PMN proinflammatory functions, suggesting a potential role of selenoproteins in the continuum of inflammation and resolution.
AB - Polymorphonuclear neutrophils (PMNs)-derived ROS are involved in the regulation of multiple functions of PMNs critical in both inflammation and its timely resolution. Selenium is an essential trace element that functions as a gatekeeper of cellular redox homeostasis in the form of selenoproteins. Despite their well-studied involvement in regulating functions of various immune cells, limited studies have focused on the regulation of selenoproteins in PMN and their associated functions. Ex-vivo treatment of murine primary bone marrow derived PMNs with bacterial endotoxin lipopolysaccharide (LPS) indicated temporal regulation of several selenoprotein genes at the mRNA level. However, only glutathione peroxidase 4 (Gpx4) was significantly upregulated, while Selenof, Selenow, and Gpx1 were significantly downregulated in a temporal manner at the protein level. Exposure of PMNs isolated from tRNASec (Trsp)fl/fl S100A8Cre (TrspN) PMN-specific selenoprotein knockout mice, to the Gram-negative bacterium, Citrobacter rodentium, showed decreased bacterial growth, reduced phagocytosis, as well as impaired neutrophil extracellular trap (NET) formation ability, when compared to the wild-type PMNs. Increased extracellular ROS production upon LPS stimulation was also observed in TrspN PMNs that was associated with upregulation of Alox12, Cox2, and iNOS, as well as proinflammatory cytokines such as TNFα and IL-1β. Our data indicate that the inhibition of selenoproteome expression results in alteration of PMN proinflammatory functions, suggesting a potential role of selenoproteins in the continuum of inflammation and resolution.
UR - http://www.scopus.com/inward/record.url?scp=85141496763&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85141496763&partnerID=8YFLogxK
U2 - 10.1016/j.abb.2022.109452
DO - 10.1016/j.abb.2022.109452
M3 - Article
C2 - 36336122
AN - SCOPUS:85141496763
SN - 0003-9861
VL - 732
JO - Archives of Biochemistry and Biophysics
JF - Archives of Biochemistry and Biophysics
M1 - 109452
ER -