Abstract
The selective Aurora-A kinase inhibitor MLN8237 is in clinical trials for hematologic malignancies, ovarian cancer and other solid tumors. We previously showed that MLN8237 is potently antiproliferative toward standard monolayer-cultured glioblastoma cells. We have now investigated the effect of MLN8237 with and without temozolomide or ionizing radiation on the proliferation of glioblastoma tumor stem-like cells (neurospheres) using soft agar colony formation assays and normal human astrocytes by MTT assay. Western blotting was utilized to compare MLN8237 IC50s to cellular Aurora-A and phosphoThr288Aurora-A levels. MLN8237 was more potently antiproliferative to neurosphere cells than to standard monolayer glioma cells, and was non-toxic to normal human astrocytes. Western blot analysis revealed that MLN8237 treatment inhibits phosphoThr288Aurora-A levels providing proof of drug target-hit in glioblastoma cells. Furthermore, phosphoThr288Aurora-A levels partially predicted the antiproliferative efficacy of MLN8237. We also found that Aurora-A inhibition by MLN8237 was synergistic with temozolomide and potentiated the effects of ionizing radiation on colony formation in neurosphere glioblastoma tumor stem-like cells. These results further support the potential of Aurora-A inhibitors as primary chemotherapy agents or biologic response modifiers in glioblastoma patients.
Original language | English (US) |
---|---|
Pages (from-to) | 983-990 |
Number of pages | 8 |
Journal | Cancer Chemotherapy and Pharmacology |
Volume | 73 |
Issue number | 5 |
DOIs | |
State | Published - May 2014 |
All Science Journal Classification (ASJC) codes
- Oncology
- Toxicology
- Pharmacology
- Cancer Research
- Pharmacology (medical)