TY - GEN
T1 - The simple economics of approximately optimal auctions
AU - Alaei, Saeed
AU - Fu, Hu
AU - Haghpanah, Nima
AU - Hartline, Jason
PY - 2013
Y1 - 2013
N2 - The intuition that profit is optimized by maximizing marginal revenue is a guiding principle in microeconomics. In the classical auction theory for agents with quasi-linear utility and single-dimensional preferences, Bulow and Roberts [1] show that the optimal auction of Myerson [2] is in fact optimizing marginal revenue. In particular Myerson's virtual values are exactly the derivative of an appropriate revenue curve. This paper considers mechanism design in environments where the agents have multi-dimensional and non-linear preferences. Understanding good auctions for these environments is considered to be the main challenge in Bayesian optimal mechanism design. In these environments maximizing marginal revenue may not be optimal, and furthermore, there is sometimes no direct way to implement the marginal revenue maximization mechanism. Our contributions are three fold: we characterize the settings for which marginal revenue maximization is optimal (by identifying an important condition that we call revenue linearity), we give simple procedures for implementing marginal revenue maximization in general, and we show that marginal revenue maximization is approximately optimal. Our approximation factor smoothly degrades in a term that quantifies how far the environment is from an ideal one (i.e., where marginal revenue maximization is optimal). Because the marginal revenue mechanism is optimal for well-studied single-dimensional agents, our generalization immediately extends many approximation results for singledimensional agents to more general preferences. Finally, one of the biggest open questions in Bayesian algorithmic mechanism design is in developing methodologies that are not brute-force in size of the agent type space (usually exponential in the dimension for multi-dimensional agents). Our methods identify a subproblem that, e.g., for unitdemand agents with values drawn from product distributions, enables approximation mechanisms that are polynomial in the dimension.
AB - The intuition that profit is optimized by maximizing marginal revenue is a guiding principle in microeconomics. In the classical auction theory for agents with quasi-linear utility and single-dimensional preferences, Bulow and Roberts [1] show that the optimal auction of Myerson [2] is in fact optimizing marginal revenue. In particular Myerson's virtual values are exactly the derivative of an appropriate revenue curve. This paper considers mechanism design in environments where the agents have multi-dimensional and non-linear preferences. Understanding good auctions for these environments is considered to be the main challenge in Bayesian optimal mechanism design. In these environments maximizing marginal revenue may not be optimal, and furthermore, there is sometimes no direct way to implement the marginal revenue maximization mechanism. Our contributions are three fold: we characterize the settings for which marginal revenue maximization is optimal (by identifying an important condition that we call revenue linearity), we give simple procedures for implementing marginal revenue maximization in general, and we show that marginal revenue maximization is approximately optimal. Our approximation factor smoothly degrades in a term that quantifies how far the environment is from an ideal one (i.e., where marginal revenue maximization is optimal). Because the marginal revenue mechanism is optimal for well-studied single-dimensional agents, our generalization immediately extends many approximation results for singledimensional agents to more general preferences. Finally, one of the biggest open questions in Bayesian algorithmic mechanism design is in developing methodologies that are not brute-force in size of the agent type space (usually exponential in the dimension for multi-dimensional agents). Our methods identify a subproblem that, e.g., for unitdemand agents with values drawn from product distributions, enables approximation mechanisms that are polynomial in the dimension.
UR - http://www.scopus.com/inward/record.url?scp=84893444810&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84893444810&partnerID=8YFLogxK
U2 - 10.1109/FOCS.2013.73
DO - 10.1109/FOCS.2013.73
M3 - Conference contribution
AN - SCOPUS:84893444810
SN - 9780769551357
T3 - Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS
SP - 628
EP - 637
BT - Proceedings - 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, FOCS 2013
T2 - 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, FOCS 2013
Y2 - 27 October 2013 through 29 October 2013
ER -