TY - JOUR
T1 - The size distribution of framboidal pyrite in modern sediments
T2 - An indicator of redox conditions
AU - Wilkin, R. T.
AU - Barnes, H. L.
AU - Brantley, S. L.
PY - 1996/10
Y1 - 1996/10
N2 - Pyrite framboids are densely packed, generally spherical aggregates of submicron-sized pyrite crystals. In this study, a survey was made of framboid size distributions in recently deposited sediments from euxinic (Black Sea; Framvaren Fjord, Norway; Pettaquamscutt River Estuary, Rhode Island, USA), dysoxic (Peru Margin), and oxic (Wallops Island, Virginia, USA; Great Salt Marsh, Delaware, USA) environments. Pyrite framboids in sediments of modern euxinic basins are on average smaller and less variable in size than those of sediments underlying dysoxic or oxic water columns. Down-core trends indicate framboid size distribution is a sediment property fixed very early during anoxic diagenesis, generally within the top few centimeters of burial. Size distributions in modern sediments are comparable with those in ancient sedimentary rocks, evidence that framboid size is preserved through advanced stages of diagenesis and lithification. It is proposed that where secondary pyrite growth is limited, as to preserve primary pyrite textures, framboid size distribution may be used to indicate whether fine-grained sedimentary rocks were deposited under oxic or anoxic conditions. The Crystal Size Distribution Theory relates framboid size to growth time and rate. On the basis of this theory, the characteristic smaller sizes of framboids in sediments of modern euxinic basins reflect shorter average growth times relative to oxic or dysoxic environments. In euxinic environments, framboid nucleation and growth occurs within anoxic water columns, and growth times are, on average, shorter because of hydrodynamic effects than when framboid nucleation and growth occurs within anoxic sediment porewaters underlying oxic water columns. A maximum framboid growth time of 0.4 years is indicated for framboids forming in the water columns of euxinic basins.
AB - Pyrite framboids are densely packed, generally spherical aggregates of submicron-sized pyrite crystals. In this study, a survey was made of framboid size distributions in recently deposited sediments from euxinic (Black Sea; Framvaren Fjord, Norway; Pettaquamscutt River Estuary, Rhode Island, USA), dysoxic (Peru Margin), and oxic (Wallops Island, Virginia, USA; Great Salt Marsh, Delaware, USA) environments. Pyrite framboids in sediments of modern euxinic basins are on average smaller and less variable in size than those of sediments underlying dysoxic or oxic water columns. Down-core trends indicate framboid size distribution is a sediment property fixed very early during anoxic diagenesis, generally within the top few centimeters of burial. Size distributions in modern sediments are comparable with those in ancient sedimentary rocks, evidence that framboid size is preserved through advanced stages of diagenesis and lithification. It is proposed that where secondary pyrite growth is limited, as to preserve primary pyrite textures, framboid size distribution may be used to indicate whether fine-grained sedimentary rocks were deposited under oxic or anoxic conditions. The Crystal Size Distribution Theory relates framboid size to growth time and rate. On the basis of this theory, the characteristic smaller sizes of framboids in sediments of modern euxinic basins reflect shorter average growth times relative to oxic or dysoxic environments. In euxinic environments, framboid nucleation and growth occurs within anoxic water columns, and growth times are, on average, shorter because of hydrodynamic effects than when framboid nucleation and growth occurs within anoxic sediment porewaters underlying oxic water columns. A maximum framboid growth time of 0.4 years is indicated for framboids forming in the water columns of euxinic basins.
UR - http://www.scopus.com/inward/record.url?scp=0030499729&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030499729&partnerID=8YFLogxK
U2 - 10.1016/0016-7037(96)00209-8
DO - 10.1016/0016-7037(96)00209-8
M3 - Article
AN - SCOPUS:0030499729
SN - 0016-7037
VL - 60
SP - 3897
EP - 3912
JO - Geochimica et Cosmochimica Acta
JF - Geochimica et Cosmochimica Acta
IS - 20
ER -