TY - JOUR
T1 - The Stellar-age Dependence of X-Ray Emission from Normal Star-forming Galaxies in the GOODS Fields
AU - Gilbertson, Woodrow
AU - Lehmer, Bret D.
AU - Doore, Keith
AU - Eufrasio, Rafael T.
AU - Basu-Zych, Antara
AU - Brandt, William N.
AU - Fragos, Tassos
AU - Garofali, Kristen
AU - Kovlakas, Konstantinos
AU - Luo, Bin
AU - Tozzi, Paolo
AU - Vito, Fabio
AU - Williams, Benjamin F.
AU - Xue, Yongquan
N1 - Publisher Copyright:
© 2022. The Author(s). Published by the American Astronomical Society.
PY - 2022/2/1
Y1 - 2022/2/1
N2 - The Chandra Deep Field-South and North surveys (CDFs) provide unique windows into the cosmic history of X-ray emission from normal (nonactive) galaxies. Scaling relations of normal-galaxy X-ray luminosity (L X) with star formation rate (SFR) and stellar mass (M ∗) have been used to show that the formation rates of low-mass and high-mass X-ray binaries (LMXBs and HMXBs, respectively) evolve with redshift across z ≈ 0-2 following L HMXB/SFR α(1 + z) and L LMXB/M ∗ α(1 + z)2-3. However, these measurements alone do not directly reveal the physical mechanisms behind the redshift evolution of X-ray binaries (XRBs). We derive star formation histories for a sample of 344 normal galaxies in the CDFs, using spectral energy distribution (SED) fitting of FUV-to-FIR photometric data, and construct a self-consistent, age-dependent model of the X-ray emission from the galaxies. Our model quantifies how X-ray emission from hot gas and XRB populations vary as functions of host stellar-population age. We find that (1) the ratio L X/M ∗ declines by a factor of ∼1000 from 0 to 10 Gyr and (2) the X-ray SED becomes harder with increasing age, consistent with a scenario in which the hot gas contribution to the X-ray SED declines quickly for ages above 10 Myr. When dividing our sample into subsets based on metallicity, we find some indication that L X/M ∗ is elevated for low-metallicity galaxies, consistent with recent studies of X-ray scaling relations. However, additional statistical constraints are required to quantify both the age and metallicity dependence of X-ray emission from star-forming galaxies.
AB - The Chandra Deep Field-South and North surveys (CDFs) provide unique windows into the cosmic history of X-ray emission from normal (nonactive) galaxies. Scaling relations of normal-galaxy X-ray luminosity (L X) with star formation rate (SFR) and stellar mass (M ∗) have been used to show that the formation rates of low-mass and high-mass X-ray binaries (LMXBs and HMXBs, respectively) evolve with redshift across z ≈ 0-2 following L HMXB/SFR α(1 + z) and L LMXB/M ∗ α(1 + z)2-3. However, these measurements alone do not directly reveal the physical mechanisms behind the redshift evolution of X-ray binaries (XRBs). We derive star formation histories for a sample of 344 normal galaxies in the CDFs, using spectral energy distribution (SED) fitting of FUV-to-FIR photometric data, and construct a self-consistent, age-dependent model of the X-ray emission from the galaxies. Our model quantifies how X-ray emission from hot gas and XRB populations vary as functions of host stellar-population age. We find that (1) the ratio L X/M ∗ declines by a factor of ∼1000 from 0 to 10 Gyr and (2) the X-ray SED becomes harder with increasing age, consistent with a scenario in which the hot gas contribution to the X-ray SED declines quickly for ages above 10 Myr. When dividing our sample into subsets based on metallicity, we find some indication that L X/M ∗ is elevated for low-metallicity galaxies, consistent with recent studies of X-ray scaling relations. However, additional statistical constraints are required to quantify both the age and metallicity dependence of X-ray emission from star-forming galaxies.
UR - http://www.scopus.com/inward/record.url?scp=85125870605&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85125870605&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ac4049
DO - 10.3847/1538-4357/ac4049
M3 - Article
AN - SCOPUS:85125870605
SN - 0004-637X
VL - 926
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 28
ER -