TY - CHAP
T1 - The STIM-Orai pathway
T2 - Conformational coupling between STIM and Orai in the activation of store-operated Ca2+ entry
AU - Nwokonko, Robert M.
AU - Cai, Xiangyu
AU - Loktionova, Natalia A.
AU - Wang, Youjun
AU - Zhou, Yandong
AU - Gill, Donald L.
N1 - Publisher Copyright:
© 2017, Springer International Publishing AG.
PY - 2017
Y1 - 2017
N2 - Store-operated Ca2+ entry fulfills a crucial role in controlling Ca2+ signals in almost all cells. The Ca2+-sensing stromal interaction molecule (STIM) proteins in the endoplasmic reticulum (ER) undergo complex conformational changes in response to depleted ER luminal Ca2+, allowing them to unfold and become trapped in ER-plasma membrane (PM) junctions. Dimers of STIM proteins trap and gate the plasma membrane Orai Ca2+ channels within these junctions to generate discrete zones of high Ca2+ and regulate sensitive Ca2+-dependent intracellular signaling pathways. The STIM-Orai activating region (SOAR) of STIM1 becomes exposed upon store depletion and promotes trapping of Orai1 at the PM. Residue Phe-394 within SOAR forms an integral part of the high-affinity Orai1-interacting site. Our results demonstrate that only a single active site within the dimeric SOAR domain of STIM1 is required for the activation of Orai1 channel activity. This unimolecular model is strongly supported by evidence of variable STIM1:Orai1 stoichiometry reported in many studies. We hypothesize that unimolecular coupling promotes cross-linking of channels, localizing Ca2+ signals, and regulating channel activity. We have also identified a key “nexus” region in Orai1 near the C-terminal STIM1-binding site that can be mutated to constitutively activate Ca2+ entry, mimicking STIM1 activated channels. This suggests that STIM1 mediates gating of Orai1 in an allosteric manner via interaction with the Orai1 C-terminus alone. This model suggests the dual role of STIM1 in regulating both localization and gating of Orai1 channels and has important implications for the regulation of SOCE-mediated downstream signaling and the kinetics of channel activation.
AB - Store-operated Ca2+ entry fulfills a crucial role in controlling Ca2+ signals in almost all cells. The Ca2+-sensing stromal interaction molecule (STIM) proteins in the endoplasmic reticulum (ER) undergo complex conformational changes in response to depleted ER luminal Ca2+, allowing them to unfold and become trapped in ER-plasma membrane (PM) junctions. Dimers of STIM proteins trap and gate the plasma membrane Orai Ca2+ channels within these junctions to generate discrete zones of high Ca2+ and regulate sensitive Ca2+-dependent intracellular signaling pathways. The STIM-Orai activating region (SOAR) of STIM1 becomes exposed upon store depletion and promotes trapping of Orai1 at the PM. Residue Phe-394 within SOAR forms an integral part of the high-affinity Orai1-interacting site. Our results demonstrate that only a single active site within the dimeric SOAR domain of STIM1 is required for the activation of Orai1 channel activity. This unimolecular model is strongly supported by evidence of variable STIM1:Orai1 stoichiometry reported in many studies. We hypothesize that unimolecular coupling promotes cross-linking of channels, localizing Ca2+ signals, and regulating channel activity. We have also identified a key “nexus” region in Orai1 near the C-terminal STIM1-binding site that can be mutated to constitutively activate Ca2+ entry, mimicking STIM1 activated channels. This suggests that STIM1 mediates gating of Orai1 in an allosteric manner via interaction with the Orai1 C-terminus alone. This model suggests the dual role of STIM1 in regulating both localization and gating of Orai1 channels and has important implications for the regulation of SOCE-mediated downstream signaling and the kinetics of channel activation.
UR - http://www.scopus.com/inward/record.url?scp=85029597492&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85029597492&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-57732-6_5
DO - 10.1007/978-3-319-57732-6_5
M3 - Chapter
C2 - 28900910
AN - SCOPUS:85029597492
T3 - Advances in Experimental Medicine and Biology
SP - 83
EP - 98
BT - Advances in Experimental Medicine and Biology
PB - Springer New York LLC
ER -