Abstract
Lightly cobalt-modified, Aurivillius-type, sodium bismuth titanate (Na0.5Bi4.5Ti4O15, NBT) ceramics were synthesized by substituting a small amount of cobalt ions onto the Ti4+ sites using conventional solid-state reaction. X-ray photoelectron spectroscopy (XPS) analysis coupled with bond valence sum calculations show that the dopant cobalt ions substitute for Ti4+ ions in the form of Co3+. The resultant cobalt-modified NBT ceramics (NBT-Co) exhibit better piezoelectric and electromechanical properties by comparison with pure NBT. With only 0.3 wt% Co3+ substitution, the piezoelectric properties of the NBT-Co ceramics are optimal, exhibiting a high piezoelectric coefficient (d33~33 pC/N), a low dielectric loss tan δ (~0.1% at 1 kHz), a high thickness planar coupling coefficient (kt~34%) as well as a high Curie temperature (Tc~663 °C). Such NBT-Co ceramics exhibit nearly temperature-independent piezoelectric and electromechanical properties up to 400 °C, suggesting that these cobalt-modified NBT ceramics are promising materials for high temperature piezoelectric applications.
Original language | English (US) |
---|---|
Pages (from-to) | 4268-4273 |
Number of pages | 6 |
Journal | Ceramics International |
Volume | 42 |
Issue number | 3 |
DOIs | |
State | Published - Feb 15 2016 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Process Chemistry and Technology
- Surfaces, Coatings and Films
- Materials Chemistry