TY - JOUR
T1 - The Transcriptional Signature of a Runner's High
AU - Hicks, Steven D.
AU - Jacob, Paige
AU - Perez, Omar
AU - Baffuto, Matthew
AU - Gagnon, Zofia
AU - Middleton, Frank A.
N1 - Publisher Copyright:
Copyright © 2018 by the American College of Sports Medicine.
PY - 2019/5/1
Y1 - 2019/5/1
N2 - Introduction: Endorphins, endocannabinoids, monoamines, and neurotrophins have all been implicated in the euphoric response to endurance running, known as a runner's high (RH). The epitranscriptional mechanisms regulating this effect have not been defined. Here, we investigate peripheral micro-ribonucleic acid (miRNA) changes unique to athletes experiencing postrun euphoria, yielding insights into gene networks that control an RH. Methods: A cohort study involving 25 collegiate runners (48% females, age = 20 ± 1 yr) examined salivary RNA levels before and after a long-distance run. Participants were divided into RH and nonrunner's high (NRH) groups based on surveys of four criteria (mood, lost sense of time, run quality, and euphoria). Physiological measures were also recorded (temperature, heart rate, blood pressure, pupillary dilatation, and salivary serotonin). Levels of miRNAs and their messenger RNA targets were compared across pre- and postrun samples from RH and NRH groups with two-way ANOVA. Representation of opioid, gamma-aminobutyic acid (GABA), endocannabinoid, neurotrophin, serotonergic, and dopaminergic pathways was assessed in DIANA miRPath. Pearson's correlation analyses examined relationships between miRNAs and RH indices. Results: RH participants (n = 13) demonstrated postrun mydriasis (P = 0.046) and hypothermia (P = 0.043) relative to NRH participants (n = 12) but had no difference in serotonin dynamics (P = 0.88). Six miRNAs (miR-194-5p, miR-4676-3p, miR-4254, miR-4425, miR-1273-3p, miR-6743-5p) exhibited significant effects (false discovery rate P value < 0.05) across pre- or postrun and RH/NRH groups. These miRNAs displayed target enrichment for opioid (P = 2.74E-06) and GABA (P = 0.00016) pathways. miR-1237-3p levels were related with lost sense of time (R = 0.40). Mitogen-activated protein kinase (MAPK11), an endocannabinoid target of miR-1273-3p, was nominally elevated in RH participants (false discovery rate P value = 0.11). Conclusions: Unique dynamics in miRNA concentration occur in athletes with subjective/objective evidence of RH, targeting genes implicated endorphin, endocannabinoid, and GABAergic signaling.
AB - Introduction: Endorphins, endocannabinoids, monoamines, and neurotrophins have all been implicated in the euphoric response to endurance running, known as a runner's high (RH). The epitranscriptional mechanisms regulating this effect have not been defined. Here, we investigate peripheral micro-ribonucleic acid (miRNA) changes unique to athletes experiencing postrun euphoria, yielding insights into gene networks that control an RH. Methods: A cohort study involving 25 collegiate runners (48% females, age = 20 ± 1 yr) examined salivary RNA levels before and after a long-distance run. Participants were divided into RH and nonrunner's high (NRH) groups based on surveys of four criteria (mood, lost sense of time, run quality, and euphoria). Physiological measures were also recorded (temperature, heart rate, blood pressure, pupillary dilatation, and salivary serotonin). Levels of miRNAs and their messenger RNA targets were compared across pre- and postrun samples from RH and NRH groups with two-way ANOVA. Representation of opioid, gamma-aminobutyic acid (GABA), endocannabinoid, neurotrophin, serotonergic, and dopaminergic pathways was assessed in DIANA miRPath. Pearson's correlation analyses examined relationships between miRNAs and RH indices. Results: RH participants (n = 13) demonstrated postrun mydriasis (P = 0.046) and hypothermia (P = 0.043) relative to NRH participants (n = 12) but had no difference in serotonin dynamics (P = 0.88). Six miRNAs (miR-194-5p, miR-4676-3p, miR-4254, miR-4425, miR-1273-3p, miR-6743-5p) exhibited significant effects (false discovery rate P value < 0.05) across pre- or postrun and RH/NRH groups. These miRNAs displayed target enrichment for opioid (P = 2.74E-06) and GABA (P = 0.00016) pathways. miR-1237-3p levels were related with lost sense of time (R = 0.40). Mitogen-activated protein kinase (MAPK11), an endocannabinoid target of miR-1273-3p, was nominally elevated in RH participants (false discovery rate P value = 0.11). Conclusions: Unique dynamics in miRNA concentration occur in athletes with subjective/objective evidence of RH, targeting genes implicated endorphin, endocannabinoid, and GABAergic signaling.
UR - http://www.scopus.com/inward/record.url?scp=85064218733&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85064218733&partnerID=8YFLogxK
U2 - 10.1249/MSS.0000000000001865
DO - 10.1249/MSS.0000000000001865
M3 - Article
C2 - 30557194
AN - SCOPUS:85064218733
SN - 0195-9131
VL - 51
SP - 970
EP - 978
JO - Medicine and science in sports and exercise
JF - Medicine and science in sports and exercise
IS - 5
ER -