Theoretical studies on the electronic structures and spectral properties of three iridium(III) complexes with different N^N ligands

Deming Han, Gang Zhang, Hongxing Cai, Xihe Zhang, Lihui Zhao

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

We report a quantum chemical study of the electronic structures and spectral properties of three iridium(III) biscarbene complexes with different heteroleptic N^N ligands. The theoretical calculation reveals that the lowest-lying singlet absorptions at 434 nm for 1 and 487 nm for 3 are attributed to the mixed transition characters of metal-to-ligand charge transfer (MLCT) and ligand-to-ligand charge transfer (LLCT). However, for 2, the lowest-lying singlet absorption at 509 nm is attributed to the MLCT. For 1-3, the phosphorescence at 739, 913, and 737 nm are mainly attributed to 3MLCT and 3LLCT characters. For 1 and 3, the emission energies are nearly the same, which is larger than that of 2. Ionization potentials (IP) and electron affinities (EA) calculations show that the assumed complex 3 has large EA value and enhanced electron injection ability as compared to complexes 1 and 2. Moreover, the reasons for different transition characters and phosphorescence quantum yield for the three complexes have been discussed in this paper. This theoretical contribution allows the factors determining the efficiency of radiative and nonradiative decay pathways in the three complexes.

Original languageEnglish (US)
Pages (from-to)140-151
Number of pages12
JournalMolecular crystals and liquid crystals
Volume575
Issue number1
DOIs
StatePublished - Jun 1 2013

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Theoretical studies on the electronic structures and spectral properties of three iridium(III) complexes with different N^N ligands'. Together they form a unique fingerprint.

Cite this