TY - JOUR
T1 - Thermal dose feedback control systems applied to magnetic nanoparticle hyperthermia
AU - Lad, Yash Sharad
AU - Pawar, Shreeniket
AU - Arepally, Nageshwar
AU - Carlton, Hayden
AU - Hadjipanayis, Constantinos
AU - Ivkov, Robert
AU - Abu-Ayyad, Ma’Moun
AU - Attaluri, Anilchandra
N1 - Publisher Copyright:
© 2025 The Author(s). Published with license by Taylor & Francis Group, LLC.
PY - 2025
Y1 - 2025
N2 - Clinical magnetic nanoparticle hyperthermia therapy (MNHT) requires controlled energy deposition to achieve a prescribed tumor thermal dose. The objective of this work is to design a thermal dose feedback control to deliver prescribed Cumulative Equivalent Minutes at 43 [°C] (CEM43) based on values at selected tumor boundary points. Constraints were imposed to maintain the maximum treatment temperature below 60 [°C] and the tumor boundary at ∼ 43 [°C]. The controller was designed by performing an integrated system dynamic–finite element analysis. Finite element-bioheat transfer (FE-BHT) simulations were performed on a computational phantom developed from the imaging data of a de-identified human head divided into voxels representing the skull, cerebrospinal fluid (CSF), brain, tumor, and ventricles. A uniform distribution of magnetic nanoparticles (MNPs) in an ellipsoid was used to represent MNPs in the phantom tumor. The MNP distribution was subdivided into three domains to simulate the steerable spatially confined heating region during MNHT. Proportional-integral-derivative (PID) control and model predictive control (MPC) were explored. Regions of the phantom tumor that were undertreated during the simulated MNHT were selectively heated by adjusting the heating volume to improve the tumor coverage index (CI; tumor volume ≥ CEM43 of 20 [min]). Results show that steerable spatially confined heating improves CI by ∼15%. MPC achieves CI of 80% faster than PID (67 [min] vs. 80 [min]). Simulations demonstrated the feasibility of automated control to deliver tumor conformal thermal doses using steerable spatially confined heating.
AB - Clinical magnetic nanoparticle hyperthermia therapy (MNHT) requires controlled energy deposition to achieve a prescribed tumor thermal dose. The objective of this work is to design a thermal dose feedback control to deliver prescribed Cumulative Equivalent Minutes at 43 [°C] (CEM43) based on values at selected tumor boundary points. Constraints were imposed to maintain the maximum treatment temperature below 60 [°C] and the tumor boundary at ∼ 43 [°C]. The controller was designed by performing an integrated system dynamic–finite element analysis. Finite element-bioheat transfer (FE-BHT) simulations were performed on a computational phantom developed from the imaging data of a de-identified human head divided into voxels representing the skull, cerebrospinal fluid (CSF), brain, tumor, and ventricles. A uniform distribution of magnetic nanoparticles (MNPs) in an ellipsoid was used to represent MNPs in the phantom tumor. The MNP distribution was subdivided into three domains to simulate the steerable spatially confined heating region during MNHT. Proportional-integral-derivative (PID) control and model predictive control (MPC) were explored. Regions of the phantom tumor that were undertreated during the simulated MNHT were selectively heated by adjusting the heating volume to improve the tumor coverage index (CI; tumor volume ≥ CEM43 of 20 [min]). Results show that steerable spatially confined heating improves CI by ∼15%. MPC achieves CI of 80% faster than PID (67 [min] vs. 80 [min]). Simulations demonstrated the feasibility of automated control to deliver tumor conformal thermal doses using steerable spatially confined heating.
UR - http://www.scopus.com/inward/record.url?scp=105003998868&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105003998868&partnerID=8YFLogxK
U2 - 10.1080/02656736.2025.2491519
DO - 10.1080/02656736.2025.2491519
M3 - Article
C2 - 40289252
AN - SCOPUS:105003998868
SN - 0265-6736
VL - 42
JO - International Journal of Hyperthermia
JF - International Journal of Hyperthermia
IS - 1
M1 - 2491519
ER -