Thermal Poling of Soda-Lime Silica Glass with Nonblocking Electrodes - Part 2: Effects on Mechanical and Mechanochemical Properties

Hongtu He, Jiawei Luo, Linmao Qian, Carlo G. Pantano, Seong H. Kim

Research output: Contribution to journalArticlepeer-review

42 Scopus citations

Abstract

The mechanical and mechanochemical properties of soda lime silica (SLS) glass surfaces can vary with the sodium ion (Na+) concentration in the subsurface region. Changes in these properties were studied upon modification of Na+ concentrations in the SLS glass by thermal poling. In Part-1, it is found that the Na+-depleted and Na+-gradient layers could be formed at the anode and cathode sides, respectively. Here in Part-2, we show that Na+ ions play a pivotal role in the mechanochemical wear property upon lateral shear stress. The Na+-depleted glass wear more readily as relative humidity (RH) increases, while Na+-gradient glass becomes resistant to wear at high RH. It is also found that the Na+-gradient glass surface has a higher elastic modulus and hardness with very little change in fracture toughness compared to the pristine surface. The Na+-depleted glass surface shows a lower elastic modulus and hardness; but its fracture toughness is significantly improved, which might be due to a larger densification capacity of Na+-depleted layer.

Original languageEnglish (US)
Pages (from-to)1231-1238
Number of pages8
JournalJournal of the American Ceramic Society
Volume99
Issue number4
DOIs
StatePublished - Apr 1 2016

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Thermal Poling of Soda-Lime Silica Glass with Nonblocking Electrodes - Part 2: Effects on Mechanical and Mechanochemical Properties'. Together they form a unique fingerprint.

Cite this