Thermometer Effect: Origin of the Mixed Alkali Effect in Glass Relaxation

Yingtian Yu, Mengyi Wang, Morten M. Smedskjaer, John C. Mauro, Gaurav Sant, Mathieu Bauchy

Research output: Contribution to journalArticlepeer-review

57 Scopus citations

Abstract

Despite the dramatic increase of viscosity as temperature decreases, some glasses are known to feature room-temperature relaxation. However, the structural origin of this phenomenon - known as the "thermometer effect" - remains unclear. Here, based on accelerated molecular dynamics simulations of alkali silicate glasses, we show that both enthalpy and volume follow stretched exponential decay functions upon relaxation. However, we observe a bifurcation of their stretching exponents, with β=3/5 and 3/7 for enthalpy and volume relaxation, respectively, in agreement with Phillips's topological diffusion-trap model. Based on these results, we demonstrate that the thermometer effect is a manifestation of the mixed alkali effect. We show that relaxation is driven by the existence of stressed local structural instabilities in mixed alkali glasses. This driving force is found to be at a maximum when the concentrations of each alkali atom equal each other, which arises from a balance between the concentration of each alkali atom and the magnitude of the local stress that they experience.

Original languageEnglish (US)
Article number095501
JournalPhysical review letters
Volume119
Issue number9
DOIs
StatePublished - Aug 31 2017

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Thermometer Effect: Origin of the Mixed Alkali Effect in Glass Relaxation'. Together they form a unique fingerprint.

Cite this