TY - JOUR
T1 - Thermophysical property measurement of GaN/SiC, GaN/AlN, and AlN/SiC epitaxial wafers using multi-frequency/spot-size time-domain thermoreflectance
AU - Walwil, Husam
AU - Song, Yiwen
AU - Shoemaker, Daniel C.
AU - Kang, Kyuhwe
AU - Mirabito, Timothy
AU - Redwing, Joan M.
AU - Choi, Sukwon
N1 - Publisher Copyright:
© 2025 Author(s).
PY - 2025/3/7
Y1 - 2025/3/7
N2 - Gallium nitride (GaN)-based high electron mobility transistors (HEMTs) are essential components in modern radio frequency power amplifiers. In order to improve both the device electrical and thermal performance (e.g., higher current density operation and better heat dissipation), researchers are introducing AlN into the GaN HEMT structure. The knowledge of thermal properties of the constituent layers, substrates, and interfaces is crucial for designing and optimizing GaN HEMTs that incorporate AlN into the device structure as the barrier layer, buffer layer, and/or the substrate material. This study employs a multi-frequency/spot-size time-domain thermoreflectance approach to measure the anisotropic thermal conductivity of (i) AlN and GaN epitaxial films, (ii) AlN and SiC substrates, and (iii) the thermal boundary conductance for GaN/AlN, AlN/SiC, and GaN/SiC interfaces (as a function of temperature) by characterizing GaN-on-SiC, GaN-on-AlN, and AlN-on-SiC epitaxial wafers. The thermal conductivity of both AlN and GaN films exhibits an anisotropy ratio of ∼1.3, where the in-plane thermal conductivity of a ∼1.35 μm thick high quality GaN layer (∼223 W m−1 K−1) is comparable to that of bulk GaN. A ∼1 μm thick AlN film grown by metalorganic chemical vapor deposition possesses a higher thermal conductivity than a thicker (∼1.4 μm) GaN film. The thermal boundary conductance values for a GaN/AlN interface (∼490 MW m-2 K−1) and AlN/SiC interface (∼470 MW m−2 K−1) are found to be higher than that of a GaN/SiC interface (∼305 MW m−2 K−1). This work provides thermophysical property data that are essential for optimizing the thermal design of AlN-incorporated GaN HEMT devices.
AB - Gallium nitride (GaN)-based high electron mobility transistors (HEMTs) are essential components in modern radio frequency power amplifiers. In order to improve both the device electrical and thermal performance (e.g., higher current density operation and better heat dissipation), researchers are introducing AlN into the GaN HEMT structure. The knowledge of thermal properties of the constituent layers, substrates, and interfaces is crucial for designing and optimizing GaN HEMTs that incorporate AlN into the device structure as the barrier layer, buffer layer, and/or the substrate material. This study employs a multi-frequency/spot-size time-domain thermoreflectance approach to measure the anisotropic thermal conductivity of (i) AlN and GaN epitaxial films, (ii) AlN and SiC substrates, and (iii) the thermal boundary conductance for GaN/AlN, AlN/SiC, and GaN/SiC interfaces (as a function of temperature) by characterizing GaN-on-SiC, GaN-on-AlN, and AlN-on-SiC epitaxial wafers. The thermal conductivity of both AlN and GaN films exhibits an anisotropy ratio of ∼1.3, where the in-plane thermal conductivity of a ∼1.35 μm thick high quality GaN layer (∼223 W m−1 K−1) is comparable to that of bulk GaN. A ∼1 μm thick AlN film grown by metalorganic chemical vapor deposition possesses a higher thermal conductivity than a thicker (∼1.4 μm) GaN film. The thermal boundary conductance values for a GaN/AlN interface (∼490 MW m-2 K−1) and AlN/SiC interface (∼470 MW m−2 K−1) are found to be higher than that of a GaN/SiC interface (∼305 MW m−2 K−1). This work provides thermophysical property data that are essential for optimizing the thermal design of AlN-incorporated GaN HEMT devices.
UR - http://www.scopus.com/inward/record.url?scp=86000329989&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=86000329989&partnerID=8YFLogxK
U2 - 10.1063/5.0245381
DO - 10.1063/5.0245381
M3 - Article
AN - SCOPUS:86000329989
SN - 0021-8979
VL - 137
JO - Journal of Applied Physics
JF - Journal of Applied Physics
IS - 9
M1 - 095105
ER -