Three dimensional indoor positioning based on visible light with Gaussian mixture sigma-point particle filter technique

Wenjun Gu, Weizhi Zhang, Jin Wang, M. R. Amini Kashani, Mohsen Kavehrad

Research output: Chapter in Book/Report/Conference proceedingConference contribution

16 Scopus citations


Over the past decade, location based services (LBS) have found their wide applications in indoor environments, such as large shopping malls, hospitals, warehouses, airports, etc. Current technologies provide wide choices of available solutions, which include Radio-frequency identification (RFID), Ultra wideband (UWB), wireless local area network (WLAN) and Bluetooth. With the rapid development of light-emitting-diodes (LED) technology, visible light communications (VLC) also bring a practical approach to LBS. As visible light has a better immunity against multipath effect than radio waves, higher positioning accuracy is achieved. LEDs are utilized both for illumination and positioning purpose to realize relatively lower infrastructure cost. In this paper, an indoor positioning system using VLC is proposed, with LEDs as transmitters and photo diodes as receivers. The algorithm for estimation is based on received-signalstrength (RSS) information collected from photo diodes and trilateration technique. By appropriately making use of the characteristics of receiver movements and the property of trilateration, estimation on three-dimensional (3-D) coordinates is attained. Filtering technique is applied to enable tracking capability of the algorithm, and a higher accuracy is reached compare to raw estimates. Gaussian mixture Sigma-point particle filter (GM-SPPF) is proposed for this 3-D system, which introduces the notion of Gaussian Mixture Model (GMM). The number of particles in the filter is reduced by approximating the probability distribution with Gaussian components.

Original languageEnglish (US)
Title of host publicationBroadband Access Communication Technologies IX
EditorsBenjamin B. Dingel, Katsutoshi Tsukamoto
ISBN (Electronic)9781628414776
StatePublished - 2015
EventBroadband Access Communication Technologies IX - San Francisco, United States
Duration: Feb 10 2015Feb 12 2015

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X


OtherBroadband Access Communication Technologies IX
Country/TerritoryUnited States
CitySan Francisco

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Three dimensional indoor positioning based on visible light with Gaussian mixture sigma-point particle filter technique'. Together they form a unique fingerprint.

Cite this