Three-dimensional microfluidic devices fabricated in layered paper and tape

Andres W. Martinez, Scott T. Phillips, George M. Whitesides

Research output: Contribution to journalArticlepeer-review

1079 Scopus citations

Abstract

This article describes a method for fabricating 3D microfluidic devices by stacking layers of patterned paper and double-sided adhesive tape. Paper-based 3D microfluidic devices have capabilities in microfluidics that are difficult to achieve using conventional open-channel microsystems made from glass or polymers. In particular, 3D paper-based devices wick fluids and distribute microliter volumes of samples from single inlet points into arrays of detection zones (with numbers up to thousands). This capability makes it possible to carry out a range of new analytical protocols simply and inexpensively (all on a piece of paper) without external pumps. We demonstrate a prototype 3D device that tests 4 different samples for up to 4 different analytes and displays the results of the assays in a side-by-side configuration for easy comparison. Three-dimensional paper-based microfluidic devices are especially appropriate for use in distributed healthcare in the developing world and in environmental monitoring and water analysis.

Original languageEnglish (US)
Pages (from-to)19606-19611
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume105
Issue number50
DOIs
StatePublished - Dec 16 2008

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Three-dimensional microfluidic devices fabricated in layered paper and tape'. Together they form a unique fingerprint.

Cite this