Thrombus prediction in adult and pediatric pulsatile ventricular assist devices: The role of experimental fluid dynamics

J. C. Nanna, B. N. Roszelle, B. T. Cooper, N. Yang, V. Reddy, S. Deutsch, K. B. Manning

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Ventricular assist devices (VADs) are actively used for congestive heart failure and myocarditis patients but clinical issues, such as thrombosis, still remain as work continues toward development as destination therapy devices. As Penn State continues to develop smaller generation VADs, the role of experimental fluid dynamics has increased as the capability to predict thrombus deposition using wall shear estimates has improved based on animal studies. These experimental data are leading towards the development of computational simulations to identify areas not easily visualized experimentally. Particle image velocimetry, an optical measurement technique, has been adapted and the resulting velocity data, post-processed, to extract wall shear rates throughout different areas of adult (50cc) and pediatric (12cc) VADs. The results indicate areas susceptible to thrombosis and where subsequent VAD design changes have improved the flow with adequate wall shear. The role of experimental fluid dynamic measurements have greatly improved our ability to predict areas of thrombus deposition leading to improved VAD designs, provide a foundation for computer simulations with correlations to in vivo animal testing.

Original languageEnglish (US)
Title of host publicationProceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference, NEBEC 2010
DOIs
StatePublished - 2010
Event36th Annual Northeast Bioengineering Conference, NEBEC 2010 - New York, NY, United States
Duration: Mar 26 2010Mar 28 2010

Publication series

NameProceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference, NEBEC 2010

Other

Other36th Annual Northeast Bioengineering Conference, NEBEC 2010
Country/TerritoryUnited States
CityNew York, NY
Period3/26/103/28/10

All Science Journal Classification (ASJC) codes

  • Bioengineering

Fingerprint

Dive into the research topics of 'Thrombus prediction in adult and pediatric pulsatile ventricular assist devices: The role of experimental fluid dynamics'. Together they form a unique fingerprint.

Cite this