TY - JOUR
T1 - Time-course of methamphetamine-induced neurotoxicity in rat caudate-putamen after single-dose treatment
AU - Cappon, Gregg D.
AU - Pu, Cunfeng
AU - Vorhees, Charles V.
N1 - Funding Information:
This study was funded by National Institutes of Health grant DA-06733 (CVV).
PY - 2000/4/28
Y1 - 2000/4/28
N2 - The time-course of monoamine and tyrosine hydroxylase depletion after single-dose administration of D-methamphetamine (40 mg/kg s.c.) was investigated in caudate-putamen of male Sprague-Dawley rats. Times evaluated were 6, 12, 48, 72 and 240 h following treatment. Tyrosine hydroxylase was significantly reduced by 29, 60, 66, 76 and 76% of control at each of the respective post-treatment time intervals. Dopamine was not reduced 6 h following treatment. Dopamine was significantly reduced by 53, 57, 68 and 74% 12, 48, 72 and 240 h post-treatment, respectively. Reductions in caudate-putamen serotonin began earlier and were ultimately larger than for dopamine, with significant reductions of 28, 33 55, 74 and 81% at each of the respective post-treatment intervals. Confirmation of neurotoxicity was provided by measurement of glial fibrillary acidic protein (GFAP) 240 h post-treatment. GFAP was increased at this time interval by 150% above control. Methamphetamine-induced hyperthermia during the 6 h immediately after treatment was comparable among the groups of animals used for analyses at each time interval. The results demonstrate that methamphetamine-induced monoamine reductions in the caudate-putamen occur rapidly, peak at 75-80% below controls, and last for at least 10 days after a single dose. These effects are as large or larger than those reported after the commonly used 10 mg/kgx4 dose treatment regimen administered at 2-h intervals and provides an alternate model for the investigation of methamphetamine-induced neurotoxicity.
AB - The time-course of monoamine and tyrosine hydroxylase depletion after single-dose administration of D-methamphetamine (40 mg/kg s.c.) was investigated in caudate-putamen of male Sprague-Dawley rats. Times evaluated were 6, 12, 48, 72 and 240 h following treatment. Tyrosine hydroxylase was significantly reduced by 29, 60, 66, 76 and 76% of control at each of the respective post-treatment time intervals. Dopamine was not reduced 6 h following treatment. Dopamine was significantly reduced by 53, 57, 68 and 74% 12, 48, 72 and 240 h post-treatment, respectively. Reductions in caudate-putamen serotonin began earlier and were ultimately larger than for dopamine, with significant reductions of 28, 33 55, 74 and 81% at each of the respective post-treatment intervals. Confirmation of neurotoxicity was provided by measurement of glial fibrillary acidic protein (GFAP) 240 h post-treatment. GFAP was increased at this time interval by 150% above control. Methamphetamine-induced hyperthermia during the 6 h immediately after treatment was comparable among the groups of animals used for analyses at each time interval. The results demonstrate that methamphetamine-induced monoamine reductions in the caudate-putamen occur rapidly, peak at 75-80% below controls, and last for at least 10 days after a single dose. These effects are as large or larger than those reported after the commonly used 10 mg/kgx4 dose treatment regimen administered at 2-h intervals and provides an alternate model for the investigation of methamphetamine-induced neurotoxicity.
UR - http://www.scopus.com/inward/record.url?scp=0034725177&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034725177&partnerID=8YFLogxK
U2 - 10.1016/S0006-8993(00)02107-7
DO - 10.1016/S0006-8993(00)02107-7
M3 - Article
C2 - 10773198
AN - SCOPUS:0034725177
SN - 0006-8993
VL - 863
SP - 106
EP - 111
JO - Brain research
JF - Brain research
IS - 1-2
ER -