TY - GEN
T1 - Time-resolved PIV measurements of the effect of freestream turbulence on horseshoe vortex dynamics
AU - Lange, Eric A.
AU - Elahi, Syed S.
AU - Lynch, Stephen P.
N1 - Publisher Copyright:
© 2018, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2018
Y1 - 2018
N2 - The horseshoe vortex system is a common flow feature in many natural and industrial flows occurring near the junction of a blunt obstacle with the endwall surface. In industrial settings, such as in high temperature gas turbine engines, the dynamic behavior of the horseshoe vortex has been shown to contribute significantly to the pressure loading and heat transfer behavior on surfaces near the leading edge of the obstacle. Fundamental studies of the horseshoe vortex have characterized its time mean and dynamic behavior at low freestream turbulence conditions, and studies using industry relevant geometries, such as cylindrical pin fin arrays common to cooling applications, have captured dynamic behavior of the vortex at high freestream turbulence. The isolated effect of high freestream turbulence on the dynamic behavior of the vortex, independent of upstream wake effects found in pin fin arrays and other industry geometries, however, is not well understood. This study seeks use high-speed time resolved stereo particle image velocimetry (SPIV) measurements of the horseshoe vortex system taken at varied freestream turbulence levels in front of a single Rood wing obstacle to better understand the isolated effect of freestream turbulence on the vortex position and vortex breakdown dynamics.
AB - The horseshoe vortex system is a common flow feature in many natural and industrial flows occurring near the junction of a blunt obstacle with the endwall surface. In industrial settings, such as in high temperature gas turbine engines, the dynamic behavior of the horseshoe vortex has been shown to contribute significantly to the pressure loading and heat transfer behavior on surfaces near the leading edge of the obstacle. Fundamental studies of the horseshoe vortex have characterized its time mean and dynamic behavior at low freestream turbulence conditions, and studies using industry relevant geometries, such as cylindrical pin fin arrays common to cooling applications, have captured dynamic behavior of the vortex at high freestream turbulence. The isolated effect of high freestream turbulence on the dynamic behavior of the vortex, independent of upstream wake effects found in pin fin arrays and other industry geometries, however, is not well understood. This study seeks use high-speed time resolved stereo particle image velocimetry (SPIV) measurements of the horseshoe vortex system taken at varied freestream turbulence levels in front of a single Rood wing obstacle to better understand the isolated effect of freestream turbulence on the vortex position and vortex breakdown dynamics.
UR - http://www.scopus.com/inward/record.url?scp=85141615831&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85141615831&partnerID=8YFLogxK
U2 - 10.2514/6.2018-0584
DO - 10.2514/6.2018-0584
M3 - Conference contribution
AN - SCOPUS:85141615831
SN - 9781624105241
T3 - AIAA Aerospace Sciences Meeting, 2018
BT - AIAA Aerospace Sciences Meeting
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Aerospace Sciences Meeting, 2018
Y2 - 8 January 2018 through 12 January 2018
ER -