TY - JOUR
T1 - TIMP-1 Inhibits apoptosis in lung adenocarcinoma cells via interaction with Bcl-2
AU - Nalluri, Srilatha
AU - Ghoshal-Gupta, Sampa
AU - Kutiyanawalla, Ammar
AU - Gayatri, Sitaram
AU - Lee, Byung Rho
AU - Jiwani, Shahanawaz
AU - Rojiani, Amyn M.
AU - Rojiani, Mumtaz V.
N1 - Publisher Copyright:
© 2015 Nalluri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2015/9/14
Y1 - 2015/9/14
N2 - Tissue inhibitors of metalloproteinases (TIMPs) are multifaceted molecules that exhibit properties beyond their classical proteinase inhibitory function. Although TIMP-1 is a known inhibitor of apoptosis in mammalian cells, the mechanisms by which it exerts its effects are not well-established. Our earlier studies using H2009 lung adenocarcinoma cells, implanted in the CNS, showed that TIMP-1 overexpressing H2009 cells (HB-1), resulted in more aggressive tumor kinetics and increased vasculature. The present study was undertaken to elucidate the role of TIMP-1 in the context of apoptosis, using the same lung cancer cell lines. Overexpressing TIMP-1 in a lung adenocarcinoma cell line H2009 resulted in an approximately 3-fold increased expression of Bcl-2, with a marked reduction in apoptosis upon staurosporine treatment. This was an MMP-independent function as a clone expressing TIMP-1 mutant T2G, lacking MMP inhibition activity, inhibited apoptosis as strongly as TIMP1 overexpressing clones, as determined by inhibition of PARP cleavage. Immunoprecipitation of Bcl-2 from cell lysates also co-immunoprecipitated TIMP-1, indicative of an interaction between these two proteins. This interaction was specific for TIMP-1 as TIMP-2 was not present in the Bcl-2 pull-down. Additionally, we show a co-dependency of TIMP-1 and Bcl-2 RNA and protein levels, such that abrogating Bcl-2 causes a downregulation of TIMP-1 but not TIMP-2. Finally, we demonstrate that TIMP-1 dependent inhibition of apoptosis occurs through p90RSK, with phosphorylation of the pro-apoptotic protein BAD at serine 112, ultimately reducing Bax levels and increasing mitochondrial permeability. Together, these studies define TIMP-1 as an important cancer biomarker and demonstrate the potential TIMP-1 as a crucial therapeutic target.
AB - Tissue inhibitors of metalloproteinases (TIMPs) are multifaceted molecules that exhibit properties beyond their classical proteinase inhibitory function. Although TIMP-1 is a known inhibitor of apoptosis in mammalian cells, the mechanisms by which it exerts its effects are not well-established. Our earlier studies using H2009 lung adenocarcinoma cells, implanted in the CNS, showed that TIMP-1 overexpressing H2009 cells (HB-1), resulted in more aggressive tumor kinetics and increased vasculature. The present study was undertaken to elucidate the role of TIMP-1 in the context of apoptosis, using the same lung cancer cell lines. Overexpressing TIMP-1 in a lung adenocarcinoma cell line H2009 resulted in an approximately 3-fold increased expression of Bcl-2, with a marked reduction in apoptosis upon staurosporine treatment. This was an MMP-independent function as a clone expressing TIMP-1 mutant T2G, lacking MMP inhibition activity, inhibited apoptosis as strongly as TIMP1 overexpressing clones, as determined by inhibition of PARP cleavage. Immunoprecipitation of Bcl-2 from cell lysates also co-immunoprecipitated TIMP-1, indicative of an interaction between these two proteins. This interaction was specific for TIMP-1 as TIMP-2 was not present in the Bcl-2 pull-down. Additionally, we show a co-dependency of TIMP-1 and Bcl-2 RNA and protein levels, such that abrogating Bcl-2 causes a downregulation of TIMP-1 but not TIMP-2. Finally, we demonstrate that TIMP-1 dependent inhibition of apoptosis occurs through p90RSK, with phosphorylation of the pro-apoptotic protein BAD at serine 112, ultimately reducing Bax levels and increasing mitochondrial permeability. Together, these studies define TIMP-1 as an important cancer biomarker and demonstrate the potential TIMP-1 as a crucial therapeutic target.
UR - http://www.scopus.com/inward/record.url?scp=84947546483&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84947546483&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0137673
DO - 10.1371/journal.pone.0137673
M3 - Article
C2 - 26366732
AN - SCOPUS:84947546483
SN - 1932-6203
VL - 10
JO - PloS one
JF - PloS one
IS - 9
M1 - e0137673
ER -