TNF-α impairs heart and skeletal muscle protein synthesis by altering translation initiation

Charles H. Lang, Robert A. Frost, Angus C. Nairn, David A. MacLean, Thomas C. Vary

    Research output: Contribution to journalArticlepeer-review

    225 Scopus citations

    Abstract

    This study examined potential mechanisms contributing to the inhibition of protein synthesis in skeletal muscle and heart after administration of tumor necrosis factor (TNF)-α. Rats had vascular catheters implanted, and TNF-α was infused continuously for 24 h. TNF-α decreased in vivo-determined rates of global protein synthesis in gastrocnemius (39%) and heart (25%). The TNF-α-induced decrease in protein synthesis in the gastrocnemius involved a reduction in the synthesis of both myofibrillar and sarcoplasmic proteins. To identify potential mechanisms responsible for regulating mRNA translation, we examined several eukaryotic initiation factors (eIFs) and elongation factors (eEFs). TNF-α decreased the activity of eIF-2B in muscle (39%) but not in heart. This diminished activity was not caused by a reduction in the content of eIF-2Be or the content and phosphorylation state of eIF-2α. Skeletal muscle and heart from TNF-α-treated rats demonstrated 1) an increased binding of the translation repressor 4E-binding protein-1 (4E-BP1) with eIF-4E, 2) a decreased amount of eIF-4E associated with eIF-4G, and 3) a decreased content of the hyperphosphorylated γ-form of 4E-BP1. In contrast, the infusion of TNF-α did not alter the content of eEF-1α or eEF-2, or the phosphorylation state of eEF-2. In summary, these data suggest that TNF-α impairs skeletal muscle and heart protein synthesis, at least in part, by decreasing mRNA translational efficiency resulting from an impairment in translation initiation associated with alterations in eIF-4E availability.

    Original languageEnglish (US)
    Pages (from-to)E336-E347
    JournalAmerican Journal of Physiology - Endocrinology and Metabolism
    Volume282
    Issue number2 45-2
    DOIs
    StatePublished - 2002

    All Science Journal Classification (ASJC) codes

    • Endocrinology, Diabetes and Metabolism
    • Physiology
    • Physiology (medical)

    Fingerprint

    Dive into the research topics of 'TNF-α impairs heart and skeletal muscle protein synthesis by altering translation initiation'. Together they form a unique fingerprint.

    Cite this