TY - GEN
T1 - TOP-Training
T2 - 31st International Conference on Computational Linguistics, COLING 2025
AU - Sengupta, Saptarshi
AU - Heaton, Connor
AU - Ghosh, Shreya
AU - Yin, Wenpeng
AU - Nakov, Preslav
AU - Wang, Suhang
N1 - Publisher Copyright:
© 2025 Association for Computational Linguistics.
PY - 2025
Y1 - 2025
N2 - We study extractive question-answering in the medical domain (Medical-EQA). This problem has two main challenges: (i) domain specificity, as most AI models lack necessary domain knowledge, and (ii) extraction-based answering style, which restricts most autoregressive LLMs due to potential hallucinations. To handle those challenges, we propose TOP-Training, a target-oriented pretraining paradigm that stands out among all domain adaptation techniques with two desirable features: (i) TOP-Training moves one step further than popular domain-oriented fine-tuning since it not only moves closer to the target domain, but also familiarizes itself with the target dataset, and (ii) it does not assume the existence of a large set of unlabeled instances from the target domain. Specifically, for a target Medical-EQA dataset, we extract its entities and leverage large language models (LLMs) to generate synthetic texts containing those entities; we then demonstrate that pretraining on this synthetic text data yields better performance on the target Medical-EQA benchmarks. Overall, our contributions are threefold: (i) TOP-Training, a new pretraining technique to effectively adapt LLMs to better solve a target problem, (ii) TOP-Training has a wide application scope because it does not require the target problem to have a large set of unlabeled data, and (iii) our experiments highlight the limitations of autoregressive LLMs, emphasizing TOP-Training as a means to unlock the true potential of bidirectional LLMs.
AB - We study extractive question-answering in the medical domain (Medical-EQA). This problem has two main challenges: (i) domain specificity, as most AI models lack necessary domain knowledge, and (ii) extraction-based answering style, which restricts most autoregressive LLMs due to potential hallucinations. To handle those challenges, we propose TOP-Training, a target-oriented pretraining paradigm that stands out among all domain adaptation techniques with two desirable features: (i) TOP-Training moves one step further than popular domain-oriented fine-tuning since it not only moves closer to the target domain, but also familiarizes itself with the target dataset, and (ii) it does not assume the existence of a large set of unlabeled instances from the target domain. Specifically, for a target Medical-EQA dataset, we extract its entities and leverage large language models (LLMs) to generate synthetic texts containing those entities; we then demonstrate that pretraining on this synthetic text data yields better performance on the target Medical-EQA benchmarks. Overall, our contributions are threefold: (i) TOP-Training, a new pretraining technique to effectively adapt LLMs to better solve a target problem, (ii) TOP-Training has a wide application scope because it does not require the target problem to have a large set of unlabeled data, and (iii) our experiments highlight the limitations of autoregressive LLMs, emphasizing TOP-Training as a means to unlock the true potential of bidirectional LLMs.
UR - http://www.scopus.com/inward/record.url?scp=85218489102&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85218489102&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85218489102
T3 - Proceedings - International Conference on Computational Linguistics, COLING
SP - 7035
EP - 7054
BT - Main Conference
A2 - Rambow, Owen
A2 - Wanner, Leo
A2 - Apidianaki, Marianna
A2 - Al-Khalifa, Hend
A2 - Di Eugenio, Barbara
A2 - Schockaert, Steven
PB - Association for Computational Linguistics (ACL)
Y2 - 19 January 2025 through 24 January 2025
ER -