Topology optimization design of structures based on eigenfrequency matching

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We demonstrate the design of resonating structures using a density-based topology optimization approach, which requires the eigenfrequencies to match a set of target values. To develop a solution, several optimization modules are implemented, including material interpolation models, penalization schemes, filters, analytical sensitivities, and a solver. Moreover, common challenges in topology optimization for dynamic systems and their solutions are discussed. In this study, the objective function is to minimize the error between the target and actual eigenfrequency values. The finite element method is used to compute the eigenfrequencies at each iteration. To solve the optimization problem, we use the sequential linear programming algorithm with move limits, enhanced by a filtering technique. Finally, we present a resonator design as a case study and analyze the design process with different optimization parameters.

Original languageEnglish (US)
Title of host publication47th Design Automation Conference (DAC)
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791885390
DOIs
StatePublished - 2021
Event47th Design Automation Conference, DAC 2021, Held as Part of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2021 - Virtual, Online
Duration: Aug 17 2021Aug 19 2021

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume3B-2021

Conference

Conference47th Design Automation Conference, DAC 2021, Held as Part of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2021
CityVirtual, Online
Period8/17/218/19/21

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Topology optimization design of structures based on eigenfrequency matching'. Together they form a unique fingerprint.

Cite this