Toward a Mechanistic Understanding of the Formation of 2D-GaNx in Epitaxial Graphene

Anushka Bansal, Nadire Nayir, Ke Wang, Patrick Rondomanski, Shruti Subramanian, Shalini Kumari, Joshua A. Robinson, Adri C.T. van Duin, Joan M. Redwing

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Ultrathin 2D-GaNx can be formed by Ga intercalation into epitaxial graphene (EG) on SiC followed by nitridation in ammonia. Defects in the graphene provide routes for intercalation, but the nature and role of the defects have remained elusive. Here we examine the influence of graphene layer thickness and chemical functionalization on Ga intercalation and 2D-GaNx formation using a combination of experimental and theoretical studies. Thin buffer layer regions of graphene near steps on SiC readily undergo oxygen functionalization when exposed to air or a He/O2 plasma in contrast to thicker regions which are not chemically modified. Oxygen functionalization is found to inhibit Ga intercalation leading to accumulation of Ga droplets on the surface. In contrast, Ga readily intercalates between EG and SiC in the thicker graphene regions that do not contain oxygen. When NH3 annealing is carried out immediately after Ga exposure, 2D-GaNx formation is observed only in the oxygen-functionalized regions, and Ga intercalated under thicker nonfunctionalized graphene does not convert to GaNx. Density functional theory calculations demonstrate that oxygen functionalization of graphene alters the binding energy of Ga and NH3 species to the graphene surface. The presence of hydroxyl groups on graphene inhibits binding of Ga to the surface; however, it enhances the chemical reactivity of the graphene surface to NH3 which, in turn, enhances Ga binding and facilitates the formation of 2D-GaNx. By modifying the EG process to produce oxygen-functionalized buffer layer graphene, uniformly intercalated 2D-GaNx is obtained across the entire substrate surface.

Original languageEnglish (US)
Pages (from-to)230-239
Number of pages10
JournalACS nano
Issue number1
StatePublished - Jan 10 2023

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • General Engineering
  • General Physics and Astronomy


Dive into the research topics of 'Toward a Mechanistic Understanding of the Formation of 2D-GaNx in Epitaxial Graphene'. Together they form a unique fingerprint.

Cite this