TY - JOUR
T1 - Toward Fast Neural Computing using All-Photonic Phase Change Spiking Neurons
AU - Chakraborty, Indranil
AU - Saha, Gobinda
AU - Sengupta, Abhronil
AU - Roy, Kaushik
N1 - Publisher Copyright:
© 2018, The Author(s).
PY - 2018/12/1
Y1 - 2018/12/1
N2 - The rapid growth of brain-inspired computing coupled with the inefficiencies in the CMOS implementations of neuromrphic systems has led to intense exploration of efficient hardware implementations of the functional units of the brain, namely, neurons and synapses. However, efforts have largely been invested in implementations in the electrical domain with potential limitations of switching speed, packing density of large integrated systems and interconnect losses. As an alternative, neuromorphic engineering in the photonic domain has recently gained attention. In this work, we propose a purely photonic operation of an Integrate-and-Fire Spiking neuron, based on the phase change dynamics of Ge2Sb2Te5 (GST) embedded on top of a microring resonator, which alleviates the energy constraints of PCMs in electrical domain. We also show that such a neuron can be potentially integrated with on-chip synapses into an all-Photonic Spiking Neural network inferencing framework which promises to be ultrafast and can potentially offer a large operating bandwidth.
AB - The rapid growth of brain-inspired computing coupled with the inefficiencies in the CMOS implementations of neuromrphic systems has led to intense exploration of efficient hardware implementations of the functional units of the brain, namely, neurons and synapses. However, efforts have largely been invested in implementations in the electrical domain with potential limitations of switching speed, packing density of large integrated systems and interconnect losses. As an alternative, neuromorphic engineering in the photonic domain has recently gained attention. In this work, we propose a purely photonic operation of an Integrate-and-Fire Spiking neuron, based on the phase change dynamics of Ge2Sb2Te5 (GST) embedded on top of a microring resonator, which alleviates the energy constraints of PCMs in electrical domain. We also show that such a neuron can be potentially integrated with on-chip synapses into an all-Photonic Spiking Neural network inferencing framework which promises to be ultrafast and can potentially offer a large operating bandwidth.
UR - http://www.scopus.com/inward/record.url?scp=85052391736&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85052391736&partnerID=8YFLogxK
U2 - 10.1038/s41598-018-31365-x
DO - 10.1038/s41598-018-31365-x
M3 - Article
C2 - 30154507
AN - SCOPUS:85052391736
SN - 2045-2322
VL - 8
JO - Scientific reports
JF - Scientific reports
IS - 1
M1 - 12980
ER -