Toward Fast Neural Computing using All-Photonic Phase Change Spiking Neurons

Indranil Chakraborty, Gobinda Saha, Abhronil Sengupta, Kaushik Roy

Research output: Contribution to journalArticlepeer-review

162 Scopus citations

Abstract

The rapid growth of brain-inspired computing coupled with the inefficiencies in the CMOS implementations of neuromrphic systems has led to intense exploration of efficient hardware implementations of the functional units of the brain, namely, neurons and synapses. However, efforts have largely been invested in implementations in the electrical domain with potential limitations of switching speed, packing density of large integrated systems and interconnect losses. As an alternative, neuromorphic engineering in the photonic domain has recently gained attention. In this work, we propose a purely photonic operation of an Integrate-and-Fire Spiking neuron, based on the phase change dynamics of Ge2Sb2Te5 (GST) embedded on top of a microring resonator, which alleviates the energy constraints of PCMs in electrical domain. We also show that such a neuron can be potentially integrated with on-chip synapses into an all-Photonic Spiking Neural network inferencing framework which promises to be ultrafast and can potentially offer a large operating bandwidth.

Original languageEnglish (US)
Article number12980
JournalScientific reports
Volume8
Issue number1
DOIs
StatePublished - Dec 1 2018

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Toward Fast Neural Computing using All-Photonic Phase Change Spiking Neurons'. Together they form a unique fingerprint.

Cite this