Toward habitable assistance from spoken dialogue systems

Susan L. Epstein, Rebecca J. Passonneau, Tiziana Ligorio, Joshua Gordon

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Spoken dialogue is increasingly central to systems that assist people. As the tasks that people and machines speak about together become more complex, however, users' dissatisfaction with those systems is an important concern. This paper presents a novel approach to learning for spoken dialogue systems. It describes embedded wizardry, a methodology for learning from skilled people, and applies it to a library whose patrons order books by telephone. To address the challenges inherent in this application, we introduce RFW+, a domain-independent, feature-selection method that considers feature categories. Models learned with RFW+ on embedded-wizard data improve the performance of a traditional spoken dialogue system.

Original languageEnglish (US)
Title of host publicationAAAI-12 / IAAI-12 - Proceedings of the 26th AAAI Conference on Artificial Intelligence and the 24th Innovative Applications of Artificial Intelligence Conference
Pages2281-2286
Number of pages6
StatePublished - 2012
Event26th AAAI Conference on Artificial Intelligence and the 24th Innovative Applications of Artificial Intelligence Conference, AAAI-12 / IAAI-12 - Toronto, ON, Canada
Duration: Jul 22 2012Jul 26 2012

Publication series

NameProceedings of the National Conference on Artificial Intelligence
Volume3

Other

Other26th AAAI Conference on Artificial Intelligence and the 24th Innovative Applications of Artificial Intelligence Conference, AAAI-12 / IAAI-12
Country/TerritoryCanada
CityToronto, ON
Period7/22/127/26/12

All Science Journal Classification (ASJC) codes

  • Software
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Toward habitable assistance from spoken dialogue systems'. Together they form a unique fingerprint.

Cite this