Toward High Energy Neutrino Detection with the Radar Echo Telescope for Cosmic Rays (RET-CR)

Radar Echo Telescope Collaboration

Research output: Contribution to journalConference articlepeer-review

1 Scopus citations


The Radar Echo Telescope for Cosmic Rays (RET-CR) is a pathfinder experiment for the Radar Echo Telescope for Neutrinos (RET-N), a next-generation in-ice detection experiment for ultra high energy neutrinos. RET-CR will serve as the testbed for the radar echo method to probe high-energy particle cascades in nature, whereby a transmitted radio signal is reflected from the ionization left in its wake. This method, recently validated at SLAC experiment T576, shows promising preliminary sensitivity to neutrino-induced cascades above the energy range of optical detectors like IceCube. RET-CR intends to use an in-nature test beam: the dense, in-ice cascade produced when the air shower of an ultra high energy cosmic ray impacts a high-elevation ice sheet. This in-ice cascade, orders of magnitude more dense than the in-air shower that preceded it, is similar in profile and density to the expected cascade from a neutrino-induced cascade deep in the ice. RET-CR will be triggered using surface scintillator technology and will be used to develop, test, and deploy the hardware, firmware, and software needed for the eventual RET-N. We present the strategy, status, and design sensitivity of RET-CR, and discuss its application to eventual neutrino detection.

Original languageEnglish (US)
Article number1082
JournalProceedings of Science
StatePublished - Mar 18 2022
Event37th International Cosmic Ray Conference, ICRC 2021 - Virtual, Berlin, Germany
Duration: Jul 12 2021Jul 23 2021

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Toward High Energy Neutrino Detection with the Radar Echo Telescope for Cosmic Rays (RET-CR)'. Together they form a unique fingerprint.

Cite this